Skip to content

Commit 6a039f0

Browse files
authored
Fix typo
See #17
1 parent 7d74a3d commit 6a039f0

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

convolutional-networks.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@ The Conv layer is the core building block of a Convolutional Network that does m
102102

103103
**Spatial arrangement**. We have explained the connectivity of each neuron in the Conv Layer to the input volume, but we haven't yet discussed how many neurons there are in the output volume or how they are arranged. Three hyperparameters control the size of the output volume: the **depth, stride** and **zero-padding**. We discuss these next:
104104

105-
1. First, the **depth** of the output volume is a hyperparameter: it corresponds to the number of filters we would like to use, each learning to look for something different in the input. For example, if the first Convolutional Layer takes as input the raw image, then different neurons along the depth dimension may activate in presence of various oriented edged, or blobs of color. We will refer to a set of neurons that are all looking at the same region of the input as a **depth column** (some people also prefer the term *fibre*).
105+
1. First, the **depth** of the output volume is a hyperparameter: it corresponds to the number of filters we would like to use, each learning to look for something different in the input. For example, if the first Convolutional Layer takes as input the raw image, then different neurons along the depth dimension may activate in presence of various oriented edges, or blobs of color. We will refer to a set of neurons that are all looking at the same region of the input as a **depth column** (some people also prefer the term *fibre*).
106106
2. Second, we must specify the **stride** with which we slide the filter. When the stride is 1 then we move the filters one pixel at a time. When the stride is 2 (or uncommonly 3 or more, though this is rare in practice) then the filters jump 2 pixels at a time as we slide them around. This will produce smaller output volumes spatially.
107107
3. As we will soon see, sometimes it will be convenient to pad the input volume with zeros around the border. The size of this **zero-padding** is a hyperparameter. The nice feature of zero padding is that it will allow us to control the spatial size of the output volumes (most commonly as we'll see soon we will use it to exactly preserve the spatial size of the input volume so the input and output width and height are the same).
108108

0 commit comments

Comments
 (0)