You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
-**Rolling updates:**Cortex updates deployed APIs without any downtime.
25
+
## Spinning up a Cortex cluster
23
26
24
-
-**Log streaming:** Cortex streams logs from deployed models to your CLI.
27
+
Cortex is designed to be self-hosted on any AWS account. You can spin up a Cortex cluster with a single command:
25
28
26
-
-**Prediction monitoring:** Cortex monitors network metrics and tracks predictions.
29
+
```bash
30
+
$ cortex cluster up
27
31
28
-
-**Minimal configuration:** Deployments are defined in a single `cortex.yaml` file.
32
+
aws region: us-west-2
33
+
aws instance type: p2.xlarge
34
+
min instances: 0
35
+
max instances: 10
36
+
spot instances: yes
29
37
30
-
<br>
38
+
○ spinning up your cluster ...
39
+
your cluster is ready!
40
+
```
31
41
32
-
## Usage
42
+
## Deploying a model
33
43
34
44
### Implement your predictor
35
45
@@ -94,17 +104,23 @@ negative 4
94
104
95
105
<br>
96
106
97
-
## How it works
107
+
## What is Cortex an alternative to?
108
+
109
+
Cortex is an open source alternative to serving models with SageMaker or building your own model deployment platform on top of AWS services like Elastic Kubernetes Service (EKS), Elastic Container Service (ECS), Lambda, Fargate, and Elastic Compute Cloud (EC2) or open source projects like Docker, Kubernetes, and TensorFlow Serving.
110
+
111
+
<br>
112
+
113
+
## How does Cortex work?
98
114
99
115
The CLI sends configuration and code to the cluster every time you run `cortex deploy`. Each model is loaded into a Docker container, along with any Python packages and request handling code. The model is exposed as a web service using Elastic Load Balancing (ELB), TensorFlow Serving, and ONNX Runtime. The containers are orchestrated on Elastic Kubernetes Service (EKS) while logs and metrics are streamed to CloudWatch.
100
116
101
117
<br>
102
118
103
-
## Examples
119
+
## Examples of Cortex deployments
104
120
105
121
<!-- CORTEX_VERSION_README_MINOR x5 -->
106
-
-[Sentiment analysis](https://github.com/cortexlabs/cortex/tree/0.11/examples/tensorflow/sentiment-analyzer) in TensorFlow with BERT
107
-
-[Image classification](https://github.com/cortexlabs/cortex/tree/0.11/examples/tensorflow/image-classifier) in TensorFlow with Inception
108
-
-[Text generation](https://github.com/cortexlabs/cortex/tree/0.11/examples/pytorch/text-generator) in PyTorch with DistilGPT2
109
-
-[Reading comprehension](https://github.com/cortexlabs/cortex/tree/0.11/examples/pytorch/reading-comprehender) in PyTorch with ELMo-BiDAF
110
-
-[Iris classification](https://github.com/cortexlabs/cortex/tree/0.11/examples/sklearn/iris-classifier) in scikit-learn
122
+
*[Sentiment analysis](https://github.com/cortexlabs/cortex/tree/0.11/examples/tensorflow/sentiment-analyzer): deploy a BERT model for sentiment analysis.
123
+
*[Image classification](https://github.com/cortexlabs/cortex/tree/0.11/examples/tensorflow/image-classifier): deploy an Inception model to classify images.
124
+
*[Search completion](https://github.com/cortexlabs/cortex/tree/0.11/examples/tensorflow/search-completer): deploy Facebook's RoBERTa model to complete search terms.
125
+
*[Text generation](https://github.com/cortexlabs/cortex/tree/0.11/examples/pytorch/text-generator): deploy Hugging Face's DistilGPT2 model to generate text.
126
+
*[Iris classification](https://github.com/cortexlabs/cortex/tree/0.11/examples/sklearn/iris-classifier): deploy a scikit-learn model to classify iris flowers.
Copy file name to clipboardExpand all lines: docs/contributing/development.md
+17-17Lines changed: 17 additions & 17 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,13 +1,13 @@
1
-
# Development Environment
1
+
# Development
2
2
3
3
## Prerequisites
4
4
5
5
1. Go (>=1.12.9)
6
-
1. Docker
7
-
1. eksctl
8
-
1. kubectl
6
+
2. Docker
7
+
3. eksctl
8
+
4. kubectl
9
9
10
-
## Cortex Dev Environment
10
+
## Cortex dev environment
11
11
12
12
Clone the project:
13
13
@@ -109,7 +109,7 @@ make cli # The binary will be placed in path/to/cortex/bin/cortex
109
109
path/to/cortex/bin/cortex configure
110
110
```
111
111
112
-
### Cortex Cluster
112
+
### Cortex cluster
113
113
114
114
Start Cortex:
115
115
@@ -123,35 +123,35 @@ Tear down the Cortex cluster:
123
123
make cortex-down
124
124
```
125
125
126
-
### Deployment an Example
126
+
### Deploy an example
127
127
128
128
```bash
129
129
cd examples/iris-classifier
130
130
path/to/cortex/bin/cortex deploy
131
131
```
132
132
133
-
## Off-cluster Operator
133
+
## Off-cluster operator
134
134
135
135
If you're making changes in the operator and want faster iterations, you can run an off-cluster operator.
136
136
137
137
1. `make operator-stop` to stop the in-cluster operator
138
-
1. `make devstart` to run the off-cluster operator (which rebuilds the CLI and restarts the Operator when files change)
139
-
1. `path/to/cortex/bin/cortex configure` (on a separate terminal) to configure your cortex CLI to use the off-cluster operator. When prompted for operator URL, use `http://localhost:8888`
138
+
2. `make devstart` to run the off-cluster operator (which rebuilds the CLI and restarts the Operator when files change)
139
+
3. `path/to/cortex/bin/cortex configure` (on a separate terminal) to configure your cortex CLI to use the off-cluster operator. When prompted for operator URL, use `http://localhost:8888`
140
140
141
141
Note: `make cortex-up-dev`will start Cortex without installing the operator.
142
142
143
143
If you want to switch back to the in-cluster operator:
144
144
145
145
1. `<ctrl+C>` to stop your off-cluster operator
146
-
1. `make operator-start` to install the operator in your cluster
147
-
1. `path/to/cortex/bin/cortex configure` to configure your cortex CLI to use the in-cluster operator. When prompted for operator URL, use the URL shown when running `make cortex-info`
146
+
2. `make operator-start` to install the operator in your cluster
147
+
3. `path/to/cortex/bin/cortex configure` to configure your cortex CLI to use the in-cluster operator. When prompted for operator URL, use the URL shown when running `make cortex-info`
148
148
149
-
## Dev Workflow
149
+
## Dev workflow
150
150
151
151
1. `make cortex-up-dev`
152
-
1. `make devstart`
153
-
1. Make changes
154
-
1. `make registry-dev`
155
-
1. Test your changes with projects in `examples` or your own
152
+
2. `make devstart`
153
+
3. Make changes
154
+
4. `make registry-dev`
155
+
5. Test your changes with projects in `examples` or your own
0 commit comments