Skip to content

Commit 6738370

Browse files
vishalbolludeliahu
authored andcommitted
Remove max_review_length aggregate from sentiment_dnn (#50)
1 parent 75fbc0d commit 6738370

File tree

2 files changed

+1
-3
lines changed

2 files changed

+1
-3
lines changed

examples/reviews/implementations/models/sentiment_dnn.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,11 +5,9 @@
55
def create_estimator(run_config, model_config):
66
hparams = model_config["hparams"]
77
vocab_size = len(model_config["aggregates"]["reviews_vocab"])
8-
max_review_length = model_config["aggregates"]["max_review_length"]
98

109
def model_fn(features, labels, mode, params):
1110
embedding_input = features["embedding_input"]
12-
embedding_input = tf.reshape(embedding_input, [-1, max_review_length])
1311
model = keras.Sequential()
1412
model.add(keras.layers.Embedding(vocab_size, 16))
1513
model.add(keras.layers.GlobalAveragePooling1D())
@@ -36,6 +34,7 @@ def model_fn(features, labels, mode, params):
3634
loss=loss,
3735
train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()),
3836
)
37+
3938
if mode is tf.estimator.ModeKeys.EVAL:
4039
logits = model(embedding_input, training=False)
4140
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

examples/reviews/resources/models.yaml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,6 @@
66
- embedding_input
77
aggregates:
88
- reviews_vocab
9-
- max_review_length
109
hparams:
1110
learning_rate: 0.01
1211
data_partition_ratio:

0 commit comments

Comments
 (0)