|
1 | 1 | { |
2 | | - "cells": [ |
3 | | - { |
4 | | - "cell_type": "code", |
5 | | - "execution_count": null, |
6 | | - "metadata": {}, |
7 | | - "outputs": [], |
8 | | - "source": [ |
9 | | - "import os\n", |
10 | | - "from pathlib import Path\n", |
11 | | - "import pandas as pd\n", |
12 | | - "\n", |
13 | | - "\n", |
14 | | - "def str_timedelta(td):\n", |
15 | | - " \"\"\"\n", |
16 | | - " Convert a string formatted duration (e.g. 01:30) to a timedelta.\n", |
17 | | - " \"\"\"\n", |
18 | | - " return pd.to_timedelta(pd.to_datetime(td, format=\"%H:%M:%S\").strftime(\"%H:%M:%S\"))\n", |
19 | | - "\n", |
20 | | - "\n", |
21 | | - "DATA_DIR = Path(\"./data\")\n", |
22 | | - "DATA_SOURCE = Path(os.environ.get(\"TOGGL_DATA\", \"./data/toggl-sample.csv\"))" |
23 | | - ] |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import os\n", |
| 10 | + "from pathlib import Path\n", |
| 11 | + "import pandas as pd\n", |
| 12 | + "\n", |
| 13 | + "\n", |
| 14 | + "DATA_DIR = Path(\"./data\")\n", |
| 15 | + "DATA_SOURCE = Path(os.environ.get(\"TOGGL_DATA\", \"./data/toggl-sample.csv\"))\n", |
| 16 | + "\n", |
| 17 | + "USER_INFO_FILE = os.environ.get(\"TOGGL_USER_INFO\")\n", |
| 18 | + "\n", |
| 19 | + "CLIENT_NAME = os.environ.get(\"HARVEST_CLIENT_NAME\")\n", |
| 20 | + "\n", |
| 21 | + "\n", |
| 22 | + "def str_timedelta(td):\n", |
| 23 | + " \"\"\"\n", |
| 24 | + " Convert a string formatted duration (e.g. 01:30) to a timedelta.\n", |
| 25 | + " \"\"\"\n", |
| 26 | + " return pd.to_timedelta(pd.to_datetime(td, format=\"%H:%M:%S\").strftime(\"%H:%M:%S\"))\n", |
| 27 | + "\n" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": null, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "# assign category dtype for efficiency on repeating text columns\n", |
| 37 | + "dtypes = {\n", |
| 38 | + " \"Email\": \"category\",\n", |
| 39 | + " \"Task\": \"category\",\n", |
| 40 | + " \"Client\": \"category\"\n", |
| 41 | + "}\n", |
| 42 | + "# skip reading the columns we don't care about for Harvest\n", |
| 43 | + "cols = list(dtypes) + [\n", |
| 44 | + " \"Start date\",\n", |
| 45 | + " \"Start time\",\n", |
| 46 | + " \"Duration\",\n", |
| 47 | + "]\n", |
| 48 | + "# read CSV file, parsing dates and times\n", |
| 49 | + "source = pd.read_csv(DATA_SOURCE, dtype=dtypes, usecols=cols, parse_dates=[\"Start date\"], cache_dates=True)\n", |
| 50 | + "source[\"Start time\"] = source[\"Start time\"].apply(str_timedelta)\n", |
| 51 | + "source[\"Duration\"] = source[\"Duration\"].apply(str_timedelta)\n", |
| 52 | + "source.sort_values([\"Start date\", \"Start time\", \"Email\"], inplace=True)\n", |
| 53 | + "source.dtypes" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": null, |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [], |
| 61 | + "source": [ |
| 62 | + "# rename columns that can be imported as-is\n", |
| 63 | + "source.rename(columns={\"Task\": \"Project\", \"Description\": \"Notes\", \"Start date\": \"Date\"}, inplace=True)\n", |
| 64 | + "source.dtypes" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": null, |
| 70 | + "metadata": {}, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "# update static calculated columns\n", |
| 74 | + "source[\"Client\"] = CLIENT_NAME\n", |
| 75 | + "source[\"Client\"] = source[\"Client\"].astype(\"category\")\n", |
| 76 | + "source[\"Task\"] = \"Project Consulting\"\n", |
| 77 | + "source[\"Task\"] = source[\"Task\"].astype(\"category\")" |
| 78 | + ] |
| 79 | + } |
| 80 | + ], |
| 81 | + "metadata": { |
| 82 | + "kernelspec": { |
| 83 | + "display_name": "Python 3", |
| 84 | + "language": "python", |
| 85 | + "name": "python3" |
| 86 | + }, |
| 87 | + "language_info": { |
| 88 | + "codemirror_mode": { |
| 89 | + "name": "ipython", |
| 90 | + "version": 3 |
| 91 | + }, |
| 92 | + "file_extension": ".py", |
| 93 | + "mimetype": "text/x-python", |
| 94 | + "name": "python", |
| 95 | + "nbconvert_exporter": "python", |
| 96 | + "pygments_lexer": "ipython3", |
| 97 | + "version": "3.11.6" |
| 98 | + } |
24 | 99 | }, |
25 | | - { |
26 | | - "cell_type": "code", |
27 | | - "execution_count": null, |
28 | | - "metadata": {}, |
29 | | - "outputs": [], |
30 | | - "source": [ |
31 | | - "# assign category dtype for efficiency on repeating text columns\n", |
32 | | - "dtypes = {\n", |
33 | | - " \"Email\": \"category\",\n", |
34 | | - " \"Task\": \"category\",\n", |
35 | | - " \"Client\": \"category\"\n", |
36 | | - "}\n", |
37 | | - "# skip reading the columns we don't care about for Harvest\n", |
38 | | - "cols = list(dtypes) + [\n", |
39 | | - " \"Start date\",\n", |
40 | | - " \"Start time\",\n", |
41 | | - " \"Duration\",\n", |
42 | | - "]\n", |
43 | | - "# read CSV file, parsing dates and times\n", |
44 | | - "source = pd.read_csv(DATA_SOURCE, dtype=dtypes, usecols=cols, parse_dates=[\"Start date\"], cache_dates=True)\n", |
45 | | - "source[\"Start time\"] = source[\"Start time\"].apply(str_timedelta)\n", |
46 | | - "source[\"Duration\"] = source[\"Duration\"].apply(str_timedelta)\n", |
47 | | - "source.sort_values([\"Start date\", \"Start time\", \"Email\"], inplace=True)\n", |
48 | | - "source.dtypes" |
49 | | - ] |
50 | | - } |
51 | | - ], |
52 | | - "metadata": { |
53 | | - "kernelspec": { |
54 | | - "display_name": "Python 3", |
55 | | - "language": "python", |
56 | | - "name": "python3" |
57 | | - }, |
58 | | - "language_info": { |
59 | | - "codemirror_mode": { |
60 | | - "name": "ipython", |
61 | | - "version": 3 |
62 | | - }, |
63 | | - "file_extension": ".py", |
64 | | - "mimetype": "text/x-python", |
65 | | - "name": "python", |
66 | | - "nbconvert_exporter": "python", |
67 | | - "pygments_lexer": "ipython3", |
68 | | - "version": "3.11.6" |
69 | | - } |
70 | | - }, |
71 | | - "nbformat": 4, |
72 | | - "nbformat_minor": 2 |
| 100 | + "nbformat": 4, |
| 101 | + "nbformat_minor": 2 |
73 | 102 | } |
0 commit comments