Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 26 additions & 2 deletions comfy/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -464,6 +464,22 @@ def forward_comfy_cast_weights(self, input):
uncast_bias_weight(self, weight, bias, offload_stream)
return x


def scale_hadamard(larger, smaller, k_value=None, divide=False):
if smaller.shape == torch.Size([]):
# unset
return larger
h, w = smaller.shape
if k_value is None:
#calculate from larger compared to smaller
k_value = larger.shape[-1] // smaller.shape[-1]
expected_shape = (h * k_value, w * k_value)
assert larger.shape == expected_shape, "weight_scale_inv mismatch, skipping"
if divide:
smaller = 1.0 / smaller
result = larger.view(h, k_value, w, k_value) * smaller.view(h, 1, w, 1)
return result.reshape(h * k_value, w * k_value)

def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
class scaled_fp8_op(manual_cast):
Expand All @@ -477,6 +493,9 @@ def reset_parameters(self):
if not hasattr(self, 'scale_weight'):
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)

if not hasattr(self, 'weight_scale_inv'):
self.weight_scale_inv = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)

if not scale_input:
self.scale_input = None

Expand All @@ -502,12 +521,17 @@ def forward_comfy_cast_weights(self, input):
def convert_weight(self, weight, inplace=False, **kwargs):
if inplace:
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
if self.weight_scale_inv.shape == torch.Size([]):
return weight
weight = scale_hadamard(weight, self.weight_scale_inv.to(device=weight.device, dtype=weight.dtype), k_value=None, divide=False)
return weight
else:
return weight.to(dtype=torch.float32) * self.scale_weight.to(device=weight.device, dtype=torch.float32)
return scale_hadamard(weight.to(dtype=torch.float32) * self.scale_weight.to(device=weight.device, dtype=torch.float32),
self.weight_scale_inv.to(device=weight.device, dtype=torch.float32), k_value=None, divide=False)

def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
weight = comfy.float.stochastic_rounding(scale_hadamard(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype),
self.weight_scale_inv.to(device=weight.device, dtype=weight.dtype), k_value=None, divide=True), self.weight.dtype, seed=seed)
if return_weight:
return weight
if inplace_update:
Expand Down