⚡️ Speed up method TeamsDataSource.teams_get_group by 10%
#558
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
📄 10% (0.10x) speedup for
TeamsDataSource.teams_get_groupinbackend/python/app/sources/external/microsoft/teams/teams.py⏱️ Runtime :
10.9 milliseconds→9.89 milliseconds(best of109runs)📝 Explanation and details
The optimized code achieves a 9% performance improvement (9.89ms vs 10.9ms runtime) and 9% throughput increase (34,880 vs 32,000 operations/second) through two key micro-optimizations:
1. Streamlined Error Response Handling (
_handle_teams_response)Original approach: Used sequential variable assignments (
success = True,error_msg = None) followed by multipleelifchains, requiring extra operations even for successful responses.Optimized approach: Restructured control flow to use early returns and eliminated intermediate variables:
isinstance(response, dict) and 'error' in responsefirst and returns immediatelysuccess = Trueanderror_msg = Nonesetup for the common success caseThis reduces the number of operations from ~8 attribute assignments to ~3 for success cases, as seen in the line profiler showing the success path (
return TeamsResponse(success=True, data=response, error=None)) taking 47.7% vs the original's scattered variable assignments.2. Batch Query Parameter Setting (
teams_get_group)Original approach: Seven separate
ifstatements checking each optional parameter individually.Optimized approach: Uses a parameter tuple and single loop with
setattr():ifblocks to 1 loop with 1 conditional per iterationsetattr()instead of individual attribute assignmentsself.client.teamsandteams.by_team_id(team_id).groupin locals to reduce attribute lookupsThe line profiler shows the loop approach (
for attr, value in params) is more efficient than multiple individual conditionals, especially when most parameters areNone.Performance Impact
These optimizations are particularly effective for:
The 9% improvement in both runtime and throughput indicates these micro-optimizations compound effectively without changing the function's behavior or API contract.
✅ Correctness verification report:
🌀 Generated Regression Tests and Runtime
import asyncio # used to run async functions
--- Function under test (EXACT COPY, DO NOT MODIFY) ---
import logging
from typing import List, Optional
import pytest # used for our unit tests
from app.sources.external.microsoft.teams.teams import TeamsDataSource
class MockGroupEndpoint:
"""Mock endpoint for group.get()."""
def init(self, team_id, response_map):
self.team_id = team_id
self.response_map = response_map
class MockTeamsClient:
"""Mock for .teams property with .by_team_id().group.get()."""
def init(self, response_map):
self.response_map = response_map
class MockMSGraphServiceClient:
"""Mock for MSGraphServiceClient with .teams property."""
def init(self, response_map):
self.teams = MockTeamsClient(response_map)
self.me = True # To pass hasattr check
class MockMSGraphClient:
"""Mock for MSGraphClient."""
def init(self, response_map):
self._service_client = MockMSGraphServiceClient(response_map)
--- Unit Tests ---
@pytest.fixture
def basic_response_map():
# Maps team_id to response dicts for basic tests
return {
"team_basic": {"id": "team_basic", "name": "Basic Team"},
"team_select": {"id": "team_select", "name": "Selected Team", "fields": ["field1", "field2"]},
"team_expand": {"id": "team_expand", "name": "Expanded Team", "details": {"owner": "Alice"}},
"team_error": {"error": {"code": "NotFound", "message": "Team not found"}},
"team_none": None,
"team_exception": Exception("Simulated exception"),
}
@pytest.fixture
def data_source(basic_response_map):
# Provide a TeamsDataSource with a mock MSGraphClient
client = MockMSGraphClient(basic_response_map)
return TeamsDataSource(client)
--- 1. Basic Test Cases ---
@pytest.mark.asyncio
async def test_teams_get_group_basic_success(data_source):
"""Test basic async/await behavior and success response."""
resp = await data_source.teams_get_group("team_basic")
@pytest.mark.asyncio
async def test_teams_get_group_select_fields(data_source):
"""Test select parameter returns correct fields."""
resp = await data_source.teams_get_group("team_select", select=["field1", "field2"])
@pytest.mark.asyncio
async def test_teams_get_group_expand(data_source):
"""Test expand parameter returns expanded fields."""
resp = await data_source.teams_get_group("team_expand", expand=["details"])
@pytest.mark.asyncio
async def test_teams_get_group_none_response(data_source):
"""Test None response handling."""
resp = await data_source.teams_get_group("team_none")
@pytest.mark.asyncio
async def test_teams_get_group_error_response(data_source):
"""Test error response handling."""
resp = await data_source.teams_get_group("team_error")
--- 2. Edge Test Cases ---
@pytest.mark.asyncio
async def test_teams_get_group_invalid_team_id(data_source):
"""Test with an invalid team_id (not in map). Should return default group."""
resp = await data_source.teams_get_group("team_invalid")
@pytest.mark.asyncio
async def test_teams_get_group_concurrent_calls(data_source):
"""Test concurrent async calls for different team_ids."""
team_ids = ["team_basic", "team_select", "team_expand", "team_error"]
results = await asyncio.gather(*(data_source.teams_get_group(tid) for tid in team_ids))
@pytest.mark.asyncio
async def test_teams_get_group_exception_handling(data_source, basic_response_map):
"""Test exception handling in async context."""
# Patch the response map to raise an exception for a specific team_id
basic_response_map["team_exception"] = None # Simulate None, which triggers error
resp = await data_source.teams_get_group("team_exception")
@pytest.mark.asyncio
async def test_teams_get_group_with_all_parameters(data_source):
"""Test passing all optional parameters."""
resp = await data_source.teams_get_group(
"team_select",
select=["field1", "field2"],
expand=["details"],
filter="name eq 'Selected Team'",
orderby=["name"],
search="Selected",
top=10,
skip=0
)
--- 3. Large Scale Test Cases ---
@pytest.mark.asyncio
async def test_teams_get_group_large_scale_concurrent(data_source):
"""Test large number of concurrent async calls (up to 50)."""
team_ids = [f"team_basic_{i}" for i in range(50)]
# Add responses for these team_ids to the response map
for i, tid in enumerate(team_ids):
data_source.client._service_client.teams.response_map[tid] = {"id": tid, "name": f"Team {i}"}
results = await asyncio.gather(*(data_source.teams_get_group(tid) for tid in team_ids))
for i, resp in enumerate(results):
pass
@pytest.mark.asyncio
async def test_teams_get_group_large_scale_error_handling(data_source):
"""Test large number of concurrent async calls with some errors."""
team_ids = [f"team_basic_{i}" for i in range(25)] + [f"team_error_{i}" for i in range(25)]
# Add responses for these team_ids to the response map
for i, tid in enumerate(team_ids[:25]):
data_source.client._service_client.teams.response_map[tid] = {"id": tid, "name": f"Team {i}"}
for i, tid in enumerate(team_ids[25:]):
data_source.client._service_client.teams.response_map[tid] = {"error": {"code": "NotFound", "message": f"Team {tid} not found"}}
results = await asyncio.gather(*(data_source.teams_get_group(tid) for tid in team_ids))
for i, resp in enumerate(results):
if i < 25:
pass
else:
pass
--- 4. Throughput Test Cases ---
@pytest.mark.asyncio
async def test_teams_get_group_throughput_small_load(data_source):
"""Test throughput with small load (10 concurrent calls)."""
team_ids = [f"team_basic_{i}" for i in range(10)]
for i, tid in enumerate(team_ids):
data_source.client._service_client.teams.response_map[tid] = {"id": tid, "name": f"Team {i}"}
results = await asyncio.gather(*(data_source.teams_get_group(tid) for tid in team_ids))
@pytest.mark.asyncio
async def test_teams_get_group_throughput_medium_load(data_source):
"""Test throughput with medium load (50 concurrent calls)."""
team_ids = [f"team_basic_{i}" for i in range(50)]
for i, tid in enumerate(team_ids):
data_source.client._service_client.teams.response_map[tid] = {"id": tid, "name": f"Team {i}"}
results = await asyncio.gather(*(data_source.teams_get_group(tid) for tid in team_ids))
@pytest.mark.asyncio
async def test_teams_get_group_throughput_high_volume(data_source):
"""Test throughput with high volume (200 concurrent calls)."""
team_ids = [f"team_basic_{i}" for i in range(200)]
for i, tid in enumerate(team_ids):
data_source.client._service_client.teams.response_map[tid] = {"id": tid, "name": f"Team {i}"}
results = await asyncio.gather(*(data_source.teams_get_group(tid) for tid in team_ids))
@pytest.mark.asyncio
async def test_teams_get_group_throughput_mixed_success_error(data_source):
"""Test throughput under mixed success/error conditions (100 calls)."""
team_ids = [f"team_basic_{i}" for i in range(50)] + [f"team_error_{i}" for i in range(50)]
for i, tid in enumerate(team_ids[:50]):
data_source.client._service_client.teams.response_map[tid] = {"id": tid, "name": f"Team {i}"}
for i, tid in enumerate(team_ids[50:]):
data_source.client._service_client.teams.response_map[tid] = {"error": {"code": "NotFound", "message": f"Team {tid} not found"}}
results = await asyncio.gather(*(data_source.teams_get_group(tid) for tid in team_ids))
# First 50 should be success, last 50 should be error
for i, resp in enumerate(results):
if i < 50:
pass
else:
pass
codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import asyncio # used to run async functions
The function to test (copied exactly as provided)
import logging
Mocks and stubs for dependencies
from typing import List, Optional
import pytest # used for our unit tests
from app.sources.external.microsoft.teams.teams import TeamsDataSource
Minimal TeamsResponse stub
class TeamsResponse:
def init(self, success: bool, data=None, error=None):
self.success = success
self.data = data
self.error = error
Minimal MSGraphClient stub
class DummyTeamsGroupGet:
def init(self, team_id):
self.team_id = team_id
self.calls = []
class DummyTeamsByTeamId:
def init(self, team_id):
self.group = DummyTeamsGroupGet(team_id)
class DummyTeams:
def by_team_id(self, team_id):
return DummyTeamsByTeamId(team_id)
class DummyClient:
def init(self):
self.teams = DummyTeams()
self.me = True # for hasattr check
class DummyMSGraphClient:
def get_client(self):
return self
def get_ms_graph_service_client(self):
return DummyClient()
------------------ UNIT TESTS ------------------
Basic Test Cases
@pytest.mark.asyncio
async def test_teams_get_group_basic_success():
"""Test basic successful group retrieval."""
datasource = TeamsDataSource(DummyMSGraphClient())
resp = await datasource.teams_get_group("valid_team")
@pytest.mark.asyncio
async def test_teams_get_group_basic_select_expand():
"""Test select and expand query parameters."""
datasource = TeamsDataSource(DummyMSGraphClient())
resp = await datasource.teams_get_group("valid_team", select=["field1", "field2"], expand=["expand1"])
@pytest.mark.asyncio
async def test_teams_get_group_basic_filter_orderby_search():
"""Test filter, orderby, search query parameters."""
datasource = TeamsDataSource(DummyMSGraphClient())
resp = await datasource.teams_get_group("valid_team", filter="status eq 'active'", orderby=["name"], search="project")
@pytest.mark.asyncio
async def test_teams_get_group_basic_top_skip():
"""Test top and skip query parameters."""
datasource = TeamsDataSource(DummyMSGraphClient())
resp = await datasource.teams_get_group("valid_team", top=10, skip=5)
Edge Test Cases
@pytest.mark.asyncio
async def test_teams_get_group_error_response():
"""Test error response handling."""
datasource = TeamsDataSource(DummyMSGraphClient())
resp = await datasource.teams_get_group("error_team")
@pytest.mark.asyncio
async def test_teams_get_group_exception_handling():
"""Test exception handling in async context."""
datasource = TeamsDataSource(DummyMSGraphClient())
resp = await datasource.teams_get_group("exception_team")
@pytest.mark.asyncio
async def test_teams_get_group_none_response():
"""Test None response handling."""
datasource = TeamsDataSource(DummyMSGraphClient())
resp = await datasource.teams_get_group("none_team")
@pytest.mark.asyncio
async def test_teams_get_group_empty_team_id():
"""Test empty team_id input."""
datasource = TeamsDataSource(DummyMSGraphClient())
resp = await datasource.teams_get_group("")
@pytest.mark.asyncio
async def test_teams_get_group_concurrent_execution():
"""Test concurrent execution of multiple calls."""
datasource = TeamsDataSource(DummyMSGraphClient())
tasks = [
datasource.teams_get_group("valid_team", select=["fieldA"]),
datasource.teams_get_group("error_team"),
datasource.teams_get_group("exception_team"),
datasource.teams_get_group("none_team"),
]
results = await asyncio.gather(*tasks)
Large Scale Test Cases
@pytest.mark.asyncio
async def test_teams_get_group_large_response():
"""Test function with large data response."""
datasource = TeamsDataSource(DummyMSGraphClient())
resp = await datasource.teams_get_group("large_team")
@pytest.mark.asyncio
async def test_teams_get_group_many_concurrent():
"""Test many concurrent calls (scalability)."""
datasource = TeamsDataSource(DummyMSGraphClient())
team_ids = [f"valid_team_{i}" for i in range(20)]
tasks = [datasource.teams_get_group(team_id) for team_id in team_ids]
results = await asyncio.gather(*tasks)
for i, resp in enumerate(results):
pass
Throughput Test Cases
@pytest.mark.asyncio
async def test_teams_get_group_throughput_small_load():
"""Throughput test: small load, 5 concurrent calls."""
datasource = TeamsDataSource(DummyMSGraphClient())
tasks = [datasource.teams_get_group("valid_team") for _ in range(5)]
results = await asyncio.gather(*tasks)
for resp in results:
pass
@pytest.mark.asyncio
async def test_teams_get_group_throughput_medium_load():
"""Throughput test: medium load, 50 concurrent calls."""
datasource = TeamsDataSource(DummyMSGraphClient())
tasks = [datasource.teams_get_group(f"valid_team_{i}") for i in range(50)]
results = await asyncio.gather(*tasks)
for i, resp in enumerate(results):
pass
@pytest.mark.asyncio
async def test_teams_get_group_throughput_large_load():
"""Throughput test: large load, 200 concurrent calls."""
datasource = TeamsDataSource(DummyMSGraphClient())
tasks = [datasource.teams_get_group(f"valid_team_{i}") for i in range(200)]
results = await asyncio.gather(*tasks)
for i, resp in enumerate(results):
pass
@pytest.mark.asyncio
async def test_teams_get_group_throughput_mixed_load():
"""Throughput test: mixed load of success and error responses."""
datasource = TeamsDataSource(DummyMSGraphClient())
team_ids = ["valid_team"] * 10 + ["error_team"] * 5 + ["exception_team"] * 5
tasks = [datasource.teams_get_group(team_id) for team_id in team_ids]
results = await asyncio.gather(*tasks)
for i, resp in enumerate(results):
if i < 10:
pass
elif 10 <= i < 15:
pass
else:
pass
codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
To edit these changes
git checkout codeflash/optimize-TeamsDataSource.teams_get_group-mhttqcxwand push.