⚡️ Speed up method JiraDataSource.create_issue_type by 11%
#542
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
📄 11% (0.11x) speedup for
JiraDataSource.create_issue_typeinbackend/python/app/sources/external/jira/jira.py⏱️ Runtime :
2.34 milliseconds→2.11 milliseconds(best of250runs)📝 Explanation and details
The optimized code achieves a 10% runtime improvement through several key micro-optimizations in the
create_issue_typemethod:Key Optimizations Applied:
Reduced Dictionary Operations: The original code created three unnecessary empty dictionaries (
_path,_query, and their corresponding_as_str_dictcalls). The optimized version eliminates these by directly passing empty dictionaries{}to the HTTPRequest constructor, saving ~39% of_as_str_dictprocessing time (from 1710 hits to 570 hits in line profiler).Optimized Client Access: Cached
self._clientin a local variableclientto reduce attribute lookups during the async execution path.Streamlined Header Processing: Moved header dictionary creation (
dict(headers or ())) closer to usage and used an empty tuple as default instead of empty dict, reducing object creation overhead.Simplified URL Construction: Pass empty dict
{}directly to_safe_format_urlinstead of creating and passing the unused_pathvariable.Performance Impact Analysis:
The line profiler shows the most significant gains in
_as_str_dictfunction calls, which dropped from 1.91ms total time to 1.16ms (39% reduction). This function was called 3x per request in the original (for headers, path_params, query_params) but only 1x in the optimized version (just headers).Test Case Performance:
Based on the annotated tests, these optimizations are particularly beneficial for:
The optimizations maintain identical functionality and async behavior while reducing computational overhead, making them especially valuable for API clients that may be called frequently in production workloads.
✅ Correctness verification report:
🌀 Generated Regression Tests and Runtime
import asyncio # used to run async functions
import pytest # used for our unit tests
from app.sources.external.jira.jira import JiraDataSource
--- Minimal stubs for dependencies ---
class HTTPRequest:
def init(self, method, url, headers, path_params, query_params, body):
self.method = method
self.url = url
self.headers = headers
self.path_params = path_params
self.query_params = query_params
self.body = body
class HTTPResponse:
def init(self, data):
self.data = data
--- Fake HTTP Client for testing ---
class FakeAsyncClient:
def init(self):
self.executed_requests = []
class FakeJiraClient:
def init(self, client=None):
self._client = client if client is not None else FakeAsyncClient()
def get_client(self):
return self._client
from app.sources.external.jira.jira import JiraDataSource
--- TESTS ---
1. Basic Test Cases
@pytest.mark.asyncio
async def test_create_issue_type_basic_required_fields():
"""Test basic creation with only required 'name' field."""
ds = JiraDataSource(FakeJiraClient())
resp = await ds.create_issue_type(name="Bug")
@pytest.mark.asyncio
async def test_create_issue_type_all_fields():
"""Test creation with all fields provided."""
ds = JiraDataSource(FakeJiraClient())
resp = await ds.create_issue_type(
name="Task",
description="A task issue type",
hierarchyLevel=2,
type="standard",
headers={"X-Custom": "value"}
)
@pytest.mark.asyncio
async def test_create_issue_type_custom_headers_override():
"""Test that a custom Content-Type header is respected."""
ds = JiraDataSource(FakeJiraClient())
resp = await ds.create_issue_type(
name="Epic",
headers={"Content-Type": "application/x-custom"}
)
2. Edge Test Cases
@pytest.mark.asyncio
async def test_create_issue_type_empty_name():
"""Test with empty string for name (still required)."""
ds = JiraDataSource(FakeJiraClient())
resp = await ds.create_issue_type(name="")
@pytest.mark.asyncio
async def test_create_issue_type_none_optional_fields():
"""Test with all optional fields as None."""
ds = JiraDataSource(FakeJiraClient())
resp = await ds.create_issue_type(
name="Story",
description=None,
hierarchyLevel=None,
type=None,
headers=None
)
@pytest.mark.asyncio
async def test_create_issue_type_concurrent_execution():
"""Test concurrent execution of multiple create_issue_type calls."""
ds = JiraDataSource(FakeJiraClient())
# Launch 5 concurrent calls with different names
names = [f"IssueType_{i}" for i in range(5)]
coros = [ds.create_issue_type(name=n) for n in names]
results = await asyncio.gather(*coros)
# Each result should have the corresponding name
for i, resp in enumerate(results):
pass
@pytest.mark.asyncio
async def test_create_issue_type_invalid_client_raises():
"""Test that ValueError is raised if client is None."""
class NullClient:
def get_client(self):
return None
with pytest.raises(ValueError, match="HTTP client is not initialized"):
JiraDataSource(NullClient())
@pytest.mark.asyncio
async def test_create_issue_type_client_missing_get_base_url():
"""Test error if client does not have get_base_url method."""
class NoBaseUrlClient:
def get_client(self):
return object()
with pytest.raises(ValueError, match="HTTP client does not have get_base_url method"):
JiraDataSource(NoBaseUrlClient())
@pytest.mark.asyncio
async def test_create_issue_type_headers_are_stringified():
"""Test that non-string header keys/values are stringified."""
ds = JiraDataSource(FakeJiraClient())
resp = await ds.create_issue_type(
name="HeaderTest",
headers={123: 456}
)
3. Large Scale Test Cases
@pytest.mark.asyncio
async def test_create_issue_type_large_batch_concurrent():
"""Test concurrent creation of many issue types (up to 50)."""
ds = JiraDataSource(FakeJiraClient())
names = [f"Bulk_{i}" for i in range(50)]
coros = [ds.create_issue_type(name=n, hierarchyLevel=i) for i, n in enumerate(names)]
results = await asyncio.gather(*coros)
# All responses should be correct and unique
for i, resp in enumerate(results):
pass
@pytest.mark.asyncio
async def test_create_issue_type_long_description():
"""Test with a very long description string."""
ds = JiraDataSource(FakeJiraClient())
long_desc = "x" * 4096 # 4KB description
resp = await ds.create_issue_type(name="LongDesc", description=long_desc)
4. Throughput Test Cases
@pytest.mark.asyncio
async def test_create_issue_type_throughput_small_load():
"""Throughput test: small batch of 10 concurrent requests."""
ds = JiraDataSource(FakeJiraClient())
coros = [ds.create_issue_type(name=f"Small_{i}") for i in range(10)]
results = await asyncio.gather(*coros)
for i, resp in enumerate(results):
pass
@pytest.mark.asyncio
async def test_create_issue_type_throughput_medium_load():
"""Throughput test: medium batch of 100 concurrent requests."""
ds = JiraDataSource(FakeJiraClient())
coros = [ds.create_issue_type(name=f"Med_{i}", hierarchyLevel=i%5) for i in range(100)]
results = await asyncio.gather(*coros)
for i, resp in enumerate(results):
pass
@pytest.mark.asyncio
async def test_create_issue_type_throughput_mixed_fields():
"""Throughput test: mixed field values in concurrent requests."""
ds = JiraDataSource(FakeJiraClient())
coros = [
ds.create_issue_type(
name=f"Mix_{i}",
description=None if i % 2 == 0 else f"desc_{i}",
hierarchyLevel=i if i % 3 == 0 else None,
type="subtask" if i % 4 == 0 else None
)
for i in range(20)
]
results = await asyncio.gather(*coros)
for i, resp in enumerate(results):
if i % 2 == 0:
pass
else:
pass
if i % 3 == 0:
pass
else:
pass
if i % 4 == 0:
pass
else:
pass
codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import asyncio # used to run async functions
import pytest # used for our unit tests
from app.sources.external.jira.jira import JiraDataSource
---- Minimal stubs for dependencies ----
These are minimal implementations to allow the tests to run without external dependencies.
class HTTPResponse:
def init(self, response_data):
self.response_data = response_data
class HTTPRequest:
def init(self, method, url, headers, path_params, query_params, body):
self.method = method
self.url = url
self.headers = headers
self.path_params = path_params
self.query_params = query_params
self.body = body
class DummyHTTPClient:
def init(self, base_url):
self._base_url = base_url
self.executed_requests = []
class JiraClient:
def init(self, client):
self.client = client
from app.sources.external.jira.jira import JiraDataSource
---- Unit tests ----
1. Basic Test Cases
@pytest.mark.asyncio
async def test_create_issue_type_basic_minimal():
"""Test basic creation with only required 'name' parameter."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
response = await ds.create_issue_type(name="Bug")
# Check that description, hierarchyLevel, and type are not present
body = response.json()["body"]
@pytest.mark.asyncio
async def test_create_issue_type_basic_all_fields():
"""Test creation with all optional fields provided."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
response = await ds.create_issue_type(
name="Story",
description="A user story",
hierarchyLevel=1,
type="standard"
)
body = response.json()["body"]
@pytest.mark.asyncio
async def test_create_issue_type_basic_custom_headers():
"""Test that custom headers are merged and Content-Type is set."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
custom_headers = {"X-Custom-Header": "value"}
response = await ds.create_issue_type(
name="Task",
headers=custom_headers
)
headers = response.json()["headers"]
2. Edge Test Cases
@pytest.mark.asyncio
async def test_create_issue_type_edge_empty_name():
"""Test edge case where name is empty string."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
response = await ds.create_issue_type(name="")
@pytest.mark.asyncio
async def test_create_issue_type_edge_none_optional_fields():
"""Test edge case where all optional fields are None."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
response = await ds.create_issue_type(
name="Epic",
description=None,
hierarchyLevel=None,
type=None,
headers=None
)
body = response.json()["body"]
@pytest.mark.asyncio
async def test_create_issue_type_edge_long_name_and_description():
"""Test edge case with very long name and description."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
long_name = "X" * 512
long_description = "Y" * 2048
response = await ds.create_issue_type(
name=long_name,
description=long_description
)
body = response.json()["body"]
@pytest.mark.asyncio
async def test_create_issue_type_edge_invalid_hierarchy_level():
"""Test edge case with negative hierarchyLevel."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
response = await ds.create_issue_type(
name="Subtask",
hierarchyLevel=-1
)
body = response.json()["body"]
@pytest.mark.asyncio
async def test_create_issue_type_edge_concurrent_execution():
"""Test concurrent execution of multiple create_issue_type calls."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
names = [f"IssueType{i}" for i in range(10)]
coros = [ds.create_issue_type(name=n) for n in names]
responses = await asyncio.gather(*coros)
# Check that each response contains the correct name
for i, resp in enumerate(responses):
pass
@pytest.mark.asyncio
async def test_create_issue_type_edge_missing_client():
"""Test edge case where the HTTP client is not initialized."""
class DummyJiraClient:
def get_client(self):
return None
with pytest.raises(ValueError) as excinfo:
JiraDataSource(DummyJiraClient())
@pytest.mark.asyncio
async def test_create_issue_type_edge_client_missing_get_base_url():
"""Test edge case where client does not have get_base_url method."""
class BadClient:
pass
class DummyJiraClient:
def get_client(self):
return BadClient()
with pytest.raises(ValueError) as excinfo:
JiraDataSource(DummyJiraClient())
3. Large Scale Test Cases
@pytest.mark.asyncio
async def test_create_issue_type_large_scale_many_concurrent():
"""Test large scale with many concurrent create_issue_type calls."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
num_requests = 100
names = [f"Type_{i}" for i in range(num_requests)]
coros = [ds.create_issue_type(name=n, description=f"Desc_{i}") for i, n in enumerate(names)]
responses = await asyncio.gather(*coros)
for i, resp in enumerate(responses):
body = resp.json()["body"]
4. Throughput Test Cases
@pytest.mark.asyncio
async def test_create_issue_type_throughput_small_load():
"""Throughput test: small load (10 requests)."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
coros = [ds.create_issue_type(name=f"Small_{i}") for i in range(10)]
responses = await asyncio.gather(*coros)
for i, resp in enumerate(responses):
pass
@pytest.mark.asyncio
async def test_create_issue_type_throughput_medium_load():
"""Throughput test: medium load (50 requests)."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
coros = [ds.create_issue_type(name=f"Medium_{i}", type="standard") for i in range(50)]
responses = await asyncio.gather(*coros)
for i, resp in enumerate(responses):
pass
@pytest.mark.asyncio
async def test_create_issue_type_throughput_large_load():
"""Throughput test: large load (200 requests)."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
coros = [ds.create_issue_type(name=f"Large_{i}", hierarchyLevel=i % 5) for i in range(200)]
responses = await asyncio.gather(*coros)
for i, resp in enumerate(responses):
pass
5. Async context manager/iterator edge case (not directly applicable, but test for proper async/await usage)
@pytest.mark.asyncio
async def test_create_issue_type_async_await_usage():
"""Test that the function returns a coroutine and must be awaited."""
client = DummyHTTPClient("https://jira.example.com/")
ds = JiraDataSource(JiraClient(client))
codeflash_output = ds.create_issue_type(name="AwaitTest"); coro = codeflash_output
resp = await coro
codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
To edit these changes
git checkout codeflash/optimize-JiraDataSource.create_issue_type-mhrz3hdsand push.