Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 9, 2025

📄 19% (0.19x) speedup for JiraDataSource.add_security_level_members in backend/python/app/sources/external/jira/jira.py

⏱️ Runtime : 2.20 milliseconds 1.85 milliseconds (best of 250 runs)

📝 Explanation and details

The optimized code achieves a 19% runtime improvement and 5.9% throughput improvement through several targeted micro-optimizations in the add_security_level_members method:

Key Optimizations Applied:

  1. Eliminated unnecessary dict allocation: Replaced dict(headers or {}) with dict(headers or ()), avoiding creation of an empty dict when headers is None, since dict() can work with any iterable.

  2. Streamlined path parameter creation: Changed from explicit dict construction with separate key-value assignments to inline dict literal {'schemeId': schemeId, 'levelId': levelId}, reducing bytecode operations.

  3. Removed unused variable allocation: Eliminated the _query: Dict[str, Any] = {} variable and directly passed an empty dict {} to query_params, avoiding unnecessary variable creation and assignment.

  4. Reduced function calls to _as_str_dict: The line profiler shows _as_str_dict was called 1143 times in the original vs 762 times in optimized (33% reduction), indicating the elimination of the unused _query variable removed one unnecessary call per invocation.

Performance Impact Analysis:

The optimizations are particularly effective for high-frequency API scenarios. Looking at the annotated tests, the improvements benefit:

  • Concurrent execution tests: Multiple async calls benefit from reduced per-call overhead
  • Large-scale tests (100+ concurrent requests): The micro-optimizations compound when executed at scale
  • Throughput tests: The 5.9% throughput improvement directly translates to handling more API requests per second

Why These Optimizations Work:

In Python, object allocation and dictionary operations are relatively expensive. By eliminating unnecessary dict creations and variable assignments, the code reduces memory allocation pressure and CPU cycles. The _as_str_dict function reduction is particularly impactful since it involves dictionary comprehension over request parameters - removing one call per request saves significant processing time when handling many API calls.

These optimizations maintain full API compatibility while providing measurable performance gains for JIRA API integration workflows.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 408 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 92.9%
🌀 Generated Regression Tests and Runtime

import asyncio # used to run async functions
from typing import Any, Dict, List, Optional

import pytest # used for our unit tests
from app.sources.external.jira.jira import JiraDataSource

--- Minimal stubs for HTTPRequest/HTTPResponse and JiraClient for testing ---

class HTTPRequest:
def init(self, method, url, headers, path_params, query_params, body):
self.method = method
self.url = url
self.headers = headers
self.path_params = path_params
self.query_params = query_params
self.body = body

class HTTPResponse:
def init(self, data, status_code=200):
self.data = data
self.status_code = status_code

class DummyAsyncClient:
"""A dummy async client to simulate HTTP client behavior."""
def init(self, base_url: str):
self._base_url = base_url
self.requests = []

def get_base_url(self):
    return self._base_url

async def execute(self, req: HTTPRequest):
    # Simulate a response that echoes back the request for verification
    self.requests.append(req)
    # For edge case testing, allow injecting error via special header
    if req.headers.get("X-Force-Error") == "1":
        raise RuntimeError("Simulated client error")
    return HTTPResponse({
        "method": req.method,
        "url": req.url,
        "headers": req.headers,
        "path_params": req.path_params,
        "query_params": req.query_params,
        "body": req.body,
    })

class DummyJiraClient:
"""A dummy JiraClient that returns the DummyAsyncClient."""
def init(self, base_url: str):
self._client = DummyAsyncClient(base_url)

def get_client(self):
    return self._client

from app.sources.external.jira.jira import JiraDataSource

---- Basic Test Cases ----

@pytest.mark.asyncio
async def test_add_security_level_members_basic():
"""Test basic functionality with minimal valid arguments."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
members = [{"type": "group", "parameter": "jira-users"}]
resp = await jira.add_security_level_members("123", "456", members)

@pytest.mark.asyncio
async def test_add_security_level_members_no_members():
"""Test with members=None (body should not include 'members' key)."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
resp = await jira.add_security_level_members("abc", "def")

@pytest.mark.asyncio
async def test_add_security_level_members_custom_headers():
"""Test that custom headers are merged and Content-Type is set."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
headers = {"X-Test-Header": "foo"}
resp = await jira.add_security_level_members("1", "2", headers=headers)

@pytest.mark.asyncio
async def test_add_security_level_members_overwrite_content_type():
"""Test that Content-Type header is not overwritten if provided."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
headers = {"Content-Type": "something/else"}
resp = await jira.add_security_level_members("1", "2", headers=headers)

---- Edge Test Cases ----

@pytest.mark.asyncio
async def test_add_security_level_members_invalid_client_raises():
"""Test that ValueError is raised if client is None."""
class NullClient:
def get_client(self):
return None
with pytest.raises(ValueError, match="HTTP client is not initialized"):
JiraDataSource(NullClient())

@pytest.mark.asyncio
async def test_add_security_level_members_missing_get_base_url():
"""Test that ValueError is raised if client has no get_base_url."""
class NoBaseUrlClient:
def get_client(self):
return object()
with pytest.raises(ValueError, match="HTTP client does not have get_base_url method"):
JiraDataSource(NoBaseUrlClient())

@pytest.mark.asyncio
async def test_add_security_level_members_empty_scheme_and_level():
"""Test with empty strings for schemeId and levelId."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
resp = await jira.add_security_level_members("", "")

@pytest.mark.asyncio
async def test_add_security_level_members_special_characters():
"""Test with special characters in schemeId and levelId."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
resp = await jira.add_security_level_members("!@#", "abc/def")

@pytest.mark.asyncio
async def test_add_security_level_members_force_client_error():
"""Test that client exceptions propagate from execute()."""
class ErrorClient(DummyAsyncClient):
async def execute(self, req):
raise RuntimeError("Simulated error")
class ErrorJiraClient:
def init(self):
self._client = ErrorClient("https://example.atlassian.net")
def get_client(self):
return self._client
jira = JiraDataSource(ErrorJiraClient())
with pytest.raises(RuntimeError, match="Simulated error"):
await jira.add_security_level_members("1", "2")

@pytest.mark.asyncio
async def test_add_security_level_members_concurrent_execution():
"""Test concurrent execution of multiple requests."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
members_list = [
[{"type": "group", "parameter": f"group-{i}"}] for i in range(5)
]
# Launch 5 concurrent calls with different members
results = await asyncio.gather(*[
jira.add_security_level_members(str(i), str(i + 1), members)
for i, members in enumerate(members_list)
])
# Each result should be correct and unique
for i, resp in enumerate(results):
pass

---- Large Scale Test Cases ----

@pytest.mark.asyncio
async def test_add_security_level_members_large_members_list():
"""Test with a large list of members (hundreds)."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
members = [{"type": "group", "parameter": f"group-{i}"} for i in range(200)]
resp = await jira.add_security_level_members("big", "scale", members)

@pytest.mark.asyncio
async def test_add_security_level_members_many_concurrent():
"""Test with many concurrent calls to check async scalability."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
n = 50
tasks = [
jira.add_security_level_members(str(i), str(i + 100), [{"type": "user", "parameter": f"user-{i}"}])
for i in range(n)
]
results = await asyncio.gather(*tasks)
# Each result should correspond to its input
for i, resp in enumerate(results):
pass

---- Throughput Test Cases ----

@pytest.mark.asyncio
async def test_add_security_level_members_throughput_small_load():
"""Throughput: small load, multiple quick async calls."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
tasks = [
jira.add_security_level_members("s", str(i), [{"type": "user", "parameter": f"u{i}"}])
for i in range(5)
]
results = await asyncio.gather(*tasks)

@pytest.mark.asyncio
async def test_add_security_level_members_throughput_medium_load():
"""Throughput: medium load, moderate number of async calls."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
tasks = [
jira.add_security_level_members("m", str(i), [{"type": "user", "parameter": f"u{i}"}])
for i in range(20)
]
results = await asyncio.gather(*tasks)

@pytest.mark.asyncio
async def test_add_security_level_members_throughput_large_load():
"""Throughput: large load, stress test with many concurrent async calls."""
jira = JiraDataSource(DummyJiraClient("https://example.atlassian.net"))
num_calls = 100 # keep under 1000 as per instructions
tasks = [
jira.add_security_level_members("l", str(i), [{"type": "user", "parameter": f"u{i}"}])
for i in range(num_calls)
]
results = await asyncio.gather(*tasks)
# Check that all responses are unique by user
seen = set()
for r in results:
user = r.data["body"]["members"][0]["parameter"]
seen.add(user)

codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

#------------------------------------------------
import asyncio # used to run async functions

import pytest # used for our unit tests
from app.sources.external.jira.jira import JiraDataSource

---- Minimal stubs for required classes ----

class HTTPResponse:
"""Stub for HTTPResponse, mimics a real HTTP response."""
def init(self, status_code=200, json_data=None, headers=None):
self.status_code = status_code
self._json_data = json_data or {}
self.headers = headers or {}

def json(self):
    return self._json_data

class HTTPRequest:
"""Stub for HTTPRequest, just records request data."""
def init(self, method, url, headers, path_params, query_params, body):
self.method = method
self.url = url
self.headers = headers
self.path_params = path_params
self.query_params = query_params
self.body = body

---- Minimal JiraClient stub ----

class DummyAsyncClient:
"""Stub for the actual HTTP client, mimics async execute()."""
def init(self, base_url='https://dummy.atlassian.net'):
self._base_url = base_url
self.executed_requests = []

def get_base_url(self):
    return self._base_url

async def execute(self, req):
    # Record the request for inspection
    self.executed_requests.append(req)
    # Simulate different responses based on input
    if req.path_params.get('schemeId') == 'fail':
        raise RuntimeError("Simulated client error")
    # Return a HTTPResponse with request data echoed for inspection
    return HTTPResponse(
        status_code=200,
        json_data={
            'url': req.url,
            'method': req.method,
            'headers': req.headers,
            'path_params': req.path_params,
            'query_params': req.query_params,
            'body': req.body,
        },
        headers=req.headers
    )

class DummyJiraClient:
"""Stub for JiraClient, returns DummyAsyncClient."""
def init(self, base_url='https://dummy.atlassian.net'):
self.client = DummyAsyncClient(base_url)

def get_client(self):
    return self.client

from app.sources.external.jira.jira import JiraDataSource

---- Unit Tests ----

1. Basic Test Cases

@pytest.mark.asyncio
async def test_add_security_level_members_basic_success():
"""Test basic async execution and correct request construction."""
client = DummyJiraClient()
ds = JiraDataSource(client)
members = [{'type': 'user', 'parameter': 'testuser'}]
headers = {'X-Test-Header': 'test'}
# Await the async function
resp = await ds.add_security_level_members('123', '456', members=members, headers=headers)

@pytest.mark.asyncio
async def test_add_security_level_members_no_members():
"""Test with no members argument (should omit 'members' in body)."""
client = DummyJiraClient()
ds = JiraDataSource(client)
resp = await ds.add_security_level_members('abc', 'def')

@pytest.mark.asyncio
async def test_add_security_level_members_empty_members_list():
"""Test with empty members list (should include empty list in body)."""
client = DummyJiraClient()
ds = JiraDataSource(client)
resp = await ds.add_security_level_members('xyz', 'uvw', members=[])

2. Edge Test Cases

@pytest.mark.asyncio
async def test_add_security_level_members_invalid_client():
"""Test ValueError is raised if client returns None."""
class BadJiraClient:
def get_client(self):
return None
with pytest.raises(ValueError, match='HTTP client is not initialized'):
JiraDataSource(BadJiraClient())

@pytest.mark.asyncio
async def test_add_security_level_members_client_missing_base_url():
"""Test ValueError if client lacks get_base_url method."""
class NoBaseUrlClient:
pass
class BadJiraClient:
def get_client(self):
return NoBaseUrlClient()
with pytest.raises(ValueError, match='HTTP client does not have get_base_url method'):
JiraDataSource(BadJiraClient())

@pytest.mark.asyncio
async def test_add_security_level_members_concurrent_execution():
"""Test concurrent execution of multiple requests."""
client = DummyJiraClient()
ds = JiraDataSource(client)
members1 = [{'type': 'group', 'parameter': 'devs'}]
members2 = [{'type': 'user', 'parameter': 'alice'}]
# Run two requests concurrently
results = await asyncio.gather(
ds.add_security_level_members('1', 'a', members=members1),
ds.add_security_level_members('2', 'b', members=members2)
)
# URLs should differ by path params
urls = [r.json()['url'] for r in results]

@pytest.mark.asyncio

async def test_add_security_level_members_custom_headers_override():
"""Test that custom Content-Type header overrides default."""
client = DummyJiraClient()
ds = JiraDataSource(client)
headers = {'Content-Type': 'application/x-custom'}
resp = await ds.add_security_level_members('123', '456', headers=headers)

3. Large Scale Test Cases

@pytest.mark.asyncio
async def test_add_security_level_members_large_members_list():
"""Test with a large members list (up to 500 items)."""
client = DummyJiraClient()
ds = JiraDataSource(client)
members = [{'type': 'user', 'parameter': f'user{i}'} for i in range(500)]
resp = await ds.add_security_level_members('big', 'scale', members=members)

@pytest.mark.asyncio
async def test_add_security_level_members_many_concurrent_requests():
"""Test many concurrent requests (up to 50)."""
client = DummyJiraClient()
ds = JiraDataSource(client)
tasks = [
ds.add_security_level_members(str(i), str(i+1), members=[{'type': 'user', 'parameter': f'user{i}'}])
for i in range(50)
]
results = await asyncio.gather(*tasks)
# All URLs should be unique
urls = [r.json()['url'] for r in results]

4. Throughput Test Cases

@pytest.mark.asyncio
async def test_add_security_level_members_throughput_small_load():
"""Throughput: Test performance under small load (5 requests)."""
client = DummyJiraClient()
ds = JiraDataSource(client)
tasks = [
ds.add_security_level_members('t'+str(i), 'l'+str(i), members=[{'type': 'user', 'parameter': f'user{i}'}])
for i in range(5)
]
results = await asyncio.gather(*tasks)
# Each response should have correct member
for i, r in enumerate(results):
pass

@pytest.mark.asyncio
async def test_add_security_level_members_throughput_medium_load():
"""Throughput: Test performance under medium load (20 requests)."""
client = DummyJiraClient()
ds = JiraDataSource(client)
tasks = [
ds.add_security_level_members('mid'+str(i), 'lev'+str(i), members=[{'type': 'user', 'parameter': f'miduser{i}'}])
for i in range(20)
]
results = await asyncio.gather(*tasks)

@pytest.mark.asyncio
async def test_add_security_level_members_throughput_large_load():
"""Throughput: Test performance under large load (100 requests)."""
client = DummyJiraClient()
ds = JiraDataSource(client)
tasks = [
ds.add_security_level_members('lg'+str(i), 'lv'+str(i), members=[{'type': 'user', 'parameter': f'lguser{i}'}])
for i in range(100)
]
results = await asyncio.gather(*tasks)

@pytest.mark.asyncio
async def test_add_security_level_members_throughput_varied_load():
"""Throughput: Test with varied member list sizes per request."""
client = DummyJiraClient()
ds = JiraDataSource(client)
tasks = [
ds.add_security_level_members(
'v'+str(i), 'l'+str(i),
members=[{'type': 'user', 'parameter': f'user{j}'} for j in range(i)]
)
for i in range(10)
]
results = await asyncio.gather(*tasks)
for i, r in enumerate(results):
pass

codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-JiraDataSource.add_security_level_members-mhrxw1px and push.

Codeflash Static Badge

The optimized code achieves a **19% runtime improvement** and **5.9% throughput improvement** through several targeted micro-optimizations in the `add_security_level_members` method:

**Key Optimizations Applied:**

1. **Eliminated unnecessary dict allocation**: Replaced `dict(headers or {})` with `dict(headers or ())`, avoiding creation of an empty dict when headers is None, since `dict()` can work with any iterable.

2. **Streamlined path parameter creation**: Changed from explicit dict construction with separate key-value assignments to inline dict literal `{'schemeId': schemeId, 'levelId': levelId}`, reducing bytecode operations.

3. **Removed unused variable allocation**: Eliminated the `_query: Dict[str, Any] = {}` variable and directly passed an empty dict `{}` to `query_params`, avoiding unnecessary variable creation and assignment.

4. **Reduced function calls to `_as_str_dict`**: The line profiler shows `_as_str_dict` was called **1143 times** in the original vs **762 times** in optimized (33% reduction), indicating the elimination of the unused `_query` variable removed one unnecessary call per invocation.

**Performance Impact Analysis:**

The optimizations are particularly effective for high-frequency API scenarios. Looking at the annotated tests, the improvements benefit:
- **Concurrent execution tests**: Multiple async calls benefit from reduced per-call overhead
- **Large-scale tests** (100+ concurrent requests): The micro-optimizations compound when executed at scale
- **Throughput tests**: The 5.9% throughput improvement directly translates to handling more API requests per second

**Why These Optimizations Work:**

In Python, object allocation and dictionary operations are relatively expensive. By eliminating unnecessary dict creations and variable assignments, the code reduces memory allocation pressure and CPU cycles. The `_as_str_dict` function reduction is particularly impactful since it involves dictionary comprehension over request parameters - removing one call per request saves significant processing time when handling many API calls.

These optimizations maintain full API compatibility while providing measurable performance gains for JIRA API integration workflows.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 9, 2025 16:40
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash labels Nov 9, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant