|
| 1 | +""" |
| 2 | +Run all instrumented functions and display their trace outputs. |
| 3 | +
|
| 4 | +This script demonstrates all functions decorated with @trace_function |
| 5 | +and shows their OpenTelemetry trace spans in the console. |
| 6 | +""" |
| 7 | +import sys |
| 8 | +from pathlib import Path |
| 9 | + |
| 10 | +# Add project root to path |
| 11 | +project_root = Path(__file__).parent.parent |
| 12 | +sys.path.insert(0, str(project_root)) |
| 13 | + |
| 14 | +import numpy as np |
| 15 | +import pandas as pd |
| 16 | + |
| 17 | +from src.telemetry import setup_telemetry |
| 18 | +from src.numerical.optimization import gradient_descent |
| 19 | +from src.algorithms.graph import graph_traversal, find_node_clusters, PathFinder, calculate_node_betweenness |
| 20 | +from src.algorithms.dynamic_programming import fibonacci, matrix_sum, matrix_chain_order, coin_change, knapsack |
| 21 | +from src.data_processing.dataframe import dataframe_filter, groupby_mean, dataframe_merge |
| 22 | +from src.statistics.descriptive import describe, correlation |
| 23 | + |
| 24 | +# Initialize OpenTelemetry with console exporter |
| 25 | +print("=" * 80) |
| 26 | +print("Initializing OpenTelemetry...") |
| 27 | +print("=" * 80) |
| 28 | +setup_telemetry( |
| 29 | + service_name="optimize-me", |
| 30 | + service_version="0.1.0", |
| 31 | + exporter_type="console", |
| 32 | +) |
| 33 | + |
| 34 | +print("\n" + "=" * 80) |
| 35 | +print("RUNNING ALL INSTRUMENTED FUNCTIONS") |
| 36 | +print("=" * 80) |
| 37 | +print("\nTraces will appear as JSON objects below each function call.\n") |
| 38 | + |
| 39 | +# ============================================================================ |
| 40 | +# Numerical Optimization |
| 41 | +# ============================================================================ |
| 42 | +print("\n--- Numerical Optimization ---") |
| 43 | +print("Running gradient_descent...") |
| 44 | +X = np.array([[1, 2], [3, 4], [5, 6]]) |
| 45 | +y = np.array([1, 2, 3]) |
| 46 | +weights = gradient_descent(X, y, learning_rate=0.01, iterations=100) |
| 47 | +print(f"Result: {weights}\n") |
| 48 | + |
| 49 | +# ============================================================================ |
| 50 | +# Graph Algorithms |
| 51 | +# ============================================================================ |
| 52 | +print("\n--- Graph Algorithms ---") |
| 53 | + |
| 54 | +print("Running graph_traversal...") |
| 55 | +graph = {1: {2, 3}, 2: {4}, 3: {4}, 4: {}} |
| 56 | +visited = graph_traversal(graph, 1) |
| 57 | +print(f"Result: {visited}\n") |
| 58 | + |
| 59 | +print("Running find_node_clusters...") |
| 60 | +nodes = [{"id": 1}, {"id": 2}, {"id": 3}, {"id": 4}] |
| 61 | +edges = [{"source": 1, "target": 2}, {"source": 3, "target": 4}] |
| 62 | +clusters = find_node_clusters(nodes, edges) |
| 63 | +print(f"Result: {clusters}\n") |
| 64 | + |
| 65 | +print("Running PathFinder.find_shortest_path...") |
| 66 | +path_finder = PathFinder({"A": ["B", "C"], "B": ["D"], "C": ["D"], "D": []}) |
| 67 | +path = path_finder.find_shortest_path("A", "D") |
| 68 | +print(f"Result: {path}\n") |
| 69 | + |
| 70 | +print("Running calculate_node_betweenness...") |
| 71 | +nodes_list = ["A", "B", "C", "D"] |
| 72 | +edges_list = [{"source": "A", "target": "B"}, {"source": "B", "target": "C"}, {"source": "C", "target": "D"}] |
| 73 | +betweenness = calculate_node_betweenness(nodes_list, edges_list) |
| 74 | +print(f"Result: {betweenness}\n") |
| 75 | + |
| 76 | +# ============================================================================ |
| 77 | +# Dynamic Programming |
| 78 | +# ============================================================================ |
| 79 | +print("\n--- Dynamic Programming ---") |
| 80 | + |
| 81 | +print("Running fibonacci...") |
| 82 | +fib_result = fibonacci(10) |
| 83 | +print(f"Result: {fib_result}\n") |
| 84 | + |
| 85 | +print("Running matrix_sum...") |
| 86 | +matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] |
| 87 | +matrix_result = matrix_sum(matrix) |
| 88 | +print(f"Result: {matrix_result}\n") |
| 89 | + |
| 90 | +print("Running matrix_chain_order...") |
| 91 | +matrices = [(10, 20), (20, 30), (30, 40)] |
| 92 | +chain_result = matrix_chain_order(matrices) |
| 93 | +print(f"Result: {chain_result}\n") |
| 94 | + |
| 95 | +print("Running coin_change...") |
| 96 | +coins = [1, 2, 5] |
| 97 | +amount = 5 |
| 98 | +coin_result = coin_change(coins, amount, 0) |
| 99 | +print(f"Result: {coin_result}\n") |
| 100 | + |
| 101 | +print("Running knapsack...") |
| 102 | +weights = [10, 20, 30] |
| 103 | +values = [60, 100, 120] |
| 104 | +capacity = 50 |
| 105 | +knapsack_result = knapsack(weights, values, capacity, len(weights)) |
| 106 | +print(f"Result: {knapsack_result}\n") |
| 107 | + |
| 108 | +# ============================================================================ |
| 109 | +# Data Processing |
| 110 | +# ============================================================================ |
| 111 | +print("\n--- Data Processing ---") |
| 112 | + |
| 113 | +print("Running dataframe_filter...") |
| 114 | +df = pd.DataFrame({"A": [1, 2, 3, 4, 5], "B": [10, 20, 30, 40, 50]}) |
| 115 | +filtered = dataframe_filter(df, "A", 3) |
| 116 | +print(f"Result:\n{filtered}\n") |
| 117 | + |
| 118 | +print("Running groupby_mean...") |
| 119 | +df_group = pd.DataFrame({ |
| 120 | + "group": ["A", "A", "B", "B", "C"], |
| 121 | + "value": [10, 20, 30, 40, 50] |
| 122 | +}) |
| 123 | +grouped = groupby_mean(df_group, "group", "value") |
| 124 | +print(f"Result: {grouped}\n") |
| 125 | + |
| 126 | +print("Running dataframe_merge...") |
| 127 | +df_left = pd.DataFrame({"id": [1, 2, 3], "name": ["Alice", "Bob", "Charlie"]}) |
| 128 | +df_right = pd.DataFrame({"id": [2, 3, 4], "age": [25, 30, 35]}) |
| 129 | +merged = dataframe_merge(df_left, df_right, "id", "id") |
| 130 | +print(f"Result:\n{merged}\n") |
| 131 | + |
| 132 | +# ============================================================================ |
| 133 | +# Statistics |
| 134 | +# ============================================================================ |
| 135 | +print("\n--- Statistics ---") |
| 136 | + |
| 137 | +print("Running describe...") |
| 138 | +series = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) |
| 139 | +stats = describe(series) |
| 140 | +print(f"Result: {stats}\n") |
| 141 | + |
| 142 | +print("Running correlation...") |
| 143 | +df_corr = pd.DataFrame({ |
| 144 | + "x": [1, 2, 3, 4, 5], |
| 145 | + "y": [2, 4, 6, 8, 10], |
| 146 | + "z": [1, 3, 5, 7, 9] |
| 147 | +}) |
| 148 | +corr_result = correlation(df_corr) |
| 149 | +print(f"Result: {corr_result}\n") |
| 150 | + |
| 151 | +print("=" * 80) |
| 152 | +print("ALL FUNCTIONS EXECUTED - Check the JSON trace spans above!") |
| 153 | +print("=" * 80) |
| 154 | +print("\nEach function call above generated a trace span with:") |
| 155 | +print(" - Function name") |
| 156 | +print(" - Execution time (start_time, end_time)") |
| 157 | +print(" - Captured arguments (for gradient_descent: iterations, learning_rate)") |
| 158 | +print(" - Status (OK or ERROR)") |
| 159 | +print(" - Service information (service.name, service.version)") |
| 160 | +print("\n") |
| 161 | + |
0 commit comments