Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 11, 2025

📄 20% (0.20x) speedup for digifinex.parse_transaction in python/ccxt/digifinex.py

⏱️ Runtime : 36.0 milliseconds 29.9 milliseconds (best of 80 runs)

📝 Explanation and details

The optimization achieves a 20% speedup by eliminating function call overhead and replacing expensive operations with more efficient Python idioms.

Key Optimizations Applied:

  1. Precompiled Regex for parse8601: The most impactful change moves regex compilation from runtime to module-level initialization. Instead of compiling the regex pattern on every call (8.95ms in profiling), it's now precompiled as _PARSE8601_TZ_REGEX, reducing this to 2.37ms - a 73% improvement in regex operations.

  2. Inlined Dictionary Lookups: The safe_string* methods replaced Exchange.key_exists() function calls with direct isinstance(dictionary, dict) and key in dictionary checks. This eliminates function call overhead and uses Python's optimized dictionary membership testing, reducing safe_string execution time from 17.98ms to 8.23ms.

  3. Direct Key Access in safe_string_2: Instead of calling safe_either() with nested function calls, it now performs direct dictionary.get() operations with immediate type checking, reducing execution time from 4.62ms to 1.39ms.

  4. Optimized ISO8601 Formatting: Replaced complex string slicing and formatting operations with direct f-string interpolation (f"{s}.{msec:03d}Z"), improving readability and performance.

Performance Impact by Test Case:

  • Date parsing scenarios see the largest gains (up to 54% faster) due to regex precompilation
  • Missing fields scenarios benefit significantly (28-47% faster) from streamlined dictionary access
  • Large batch operations show consistent 20% improvements, demonstrating scalability

Why These Optimizations Work:

  • Function call elimination: Python function calls have significant overhead; inlining critical path operations provides substantial gains
  • Regex precompilation: Compiling regex patterns is expensive; doing it once at module load rather than per call is a classic optimization
  • Dictionary access patterns: Using key in dict is faster than custom existence checking functions
  • Reduced string operations: Fewer string concatenations and slicing operations in hot paths

These optimizations are particularly beneficial since parse_transaction appears to be called frequently in cryptocurrency exchange operations where parsing speed directly impacts trading performance.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 1083 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime

import copy
import datetime

imports

import pytest
from ccxt.digifinex import digifinex

--- UNIT TESTS ---

@pytest.fixture
def parser():
return digifinex()

1. BASIC TEST CASES

def test_parse_transaction_withdrawal_minimal(parser):
# Test minimal withdrawal response
tx = {"code": 200, "withdraw_id": 700}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 17.9μs -> 14.1μs (27.2% faster)

def test_parse_transaction_deposit_full(parser):
# Test deposit with all fields
tx = {
"id": 1171,
"currency": "xrp",
"hash": "ed03abc",
"chain": "",
"amount": 7.457467,
"address": "r123",
"memo": "100040",
"fee": 0.0,
"state": "3",
"created_date": "2020-04-20 11:23:00",
"finished_date": "2020-04-20 13:23:00"
}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 89.8μs -> 77.8μs (15.3% faster)

def test_parse_transaction_withdrawal_with_fee_and_chain(parser):
# Withdrawal with fee and chain
tx = {
"withdraw_id": 42,
"currency": "eth",
"hash": "0xabc",
"chain": "ERC20",
"amount": "1.23",
"address": "0x123",
"fee": "0.01",
"state": "1",
"created_date": "2021-01-01 12:00:00",
"finished_date": "2021-01-01 13:00:00"
}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 85.6μs -> 73.6μs (16.4% faster)

def test_parse_transaction_currency_case_insensitivity(parser):
# currency should be uppercased
tx = {"id": 1, "currency": "bTc"}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 18.6μs -> 15.2μs (22.5% faster)

def test_parse_transaction_with_currency_object(parser):
# currency argument should override currencyId
tx = {"id": 2, "currency": "eth"}
codeflash_output = parser.parse_transaction(tx, currency={'id': 'eth', 'code': 'ETHX'}); parsed = codeflash_output # 18.9μs -> 15.5μs (21.8% faster)

2. EDGE TEST CASES

def test_parse_transaction_missing_all_fields(parser):
# All fields missing
tx = {}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 16.9μs -> 13.2μs (28.2% faster)

def test_parse_transaction_null_values(parser):
# All fields present but set to None
tx = {
"id": None, "currency": None, "hash": None, "chain": None, "amount": None, "address": None,
"memo": None, "fee": None, "state": None, "created_date": None, "finished_date": None
}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 16.1μs -> 13.5μs (19.4% faster)

def test_parse_transaction_unusual_state(parser):
# Unknown state value
tx = {"id": 1, "currency": "btc", "state": "safe"}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 18.6μs -> 15.1μs (23.1% faster)

def test_parse_transaction_nonstandard_dates(parser):
# created_date and finished_date in wrong format
tx = {"id": 1, "currency": "btc", "created_date": "notadate", "finished_date": "2021/01/01"}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 25.6μs -> 16.6μs (54.0% faster)

def test_parse_transaction_amount_and_fee_as_strings(parser):
# amount and fee as string numbers
tx = {"id": 1, "currency": "btc", "amount": "0.123", "fee": "0.001"}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 19.8μs -> 16.5μs (20.2% faster)

def test_parse_transaction_zero_fee(parser):
# Fee is zero (should still be present)
tx = {"id": 1, "currency": "btc", "fee": 0}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 20.1μs -> 16.1μs (25.0% faster)

def test_parse_transaction_negative_amount(parser):
# Negative amount (should be parsed as float)
tx = {"id": 1, "currency": "btc", "amount": "-2.5"}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 19.9μs -> 15.9μs (24.7% faster)

def test_parse_transaction_large_id(parser):
# Large integer id
tx = {"id": 2**63, "currency": "btc"}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 18.9μs -> 15.3μs (23.7% faster)

def test_parse_transaction_tag_and_address(parser):
# Tag and address fields
tx = {"id": 1, "currency": "btc", "address": "addr", "memo": "tag1"}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 18.3μs -> 15.5μs (18.6% faster)

def test_parse_transaction_chain_none(parser):
# chain is None
tx = {"id": 1, "currency": "btc", "chain": None}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 18.6μs -> 14.9μs (24.7% faster)

def test_parse_transaction_fee_none(parser):
# fee is None
tx = {"id": 1, "currency": "btc", "fee": None}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 19.0μs -> 15.5μs (22.6% faster)

def test_parse_transaction_non_numeric_amount_fee(parser):
# Non-numeric amount and fee
tx = {"id": 1, "currency": "btc", "amount": "abc", "fee": "xyz"}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 21.7μs -> 17.9μs (21.0% faster)

def test_parse_transaction_currencyid_none_with_currency_object(parser):
# currencyId is None, currency object provided
tx = {"id": 1, "currency": None}
codeflash_output = parser.parse_transaction(tx, currency={'id': None, 'code': 'USDT'}); parsed = codeflash_output # 12.1μs -> 8.19μs (47.9% faster)

3. LARGE SCALE TEST CASES

def test_parse_transaction_large_batch(parser):
# Test parsing 1000 transactions with unique ids and values
base_tx = {
"id": 0,
"currency": "btc",
"hash": "hash",
"chain": "BTC",
"amount": "1.0",
"address": "addr",
"memo": "memo",
"fee": "0.001",
"state": "3",
"created_date": "2022-01-01 00:00:00",
"finished_date": "2022-01-01 01:00:00"
}
for i in range(1000):
tx = copy.deepcopy(base_tx)
tx['id'] = i
tx['amount'] = str(i * 0.01)
tx['fee'] = str(i * 0.0001)
tx['currency'] = "btc" if i % 2 == 0 else "eth"
tx['state'] = str((i % 4) + 1)
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 34.9ms -> 28.9ms (20.6% faster)
# Status alternates as per the mapping
expected_status = parser.parse_transaction_status(str((i % 4) + 1))

def test_parse_transaction_performance_on_large_input(parser):
# Simulate parsing a large transaction (long strings, large numbers)
tx = {
"id": "x" * 256,
"currency": "usdt",
"hash": "h" * 512,
"chain": "TRC20",
"amount": "1" * 100, # very large number as string
"address": "a" * 128,
"memo": "m" * 64,
"fee": "0.0000001",
"state": "2",
"created_date": "2023-12-31 23:59:59",
"finished_date": "2024-01-01 00:00:00"
}
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 88.5μs -> 77.8μs (13.7% faster)

def test_parse_transaction_batch_varied_fields(parser):
# Batch with missing/extra fields and different types
txs = [
{"withdraw_id": 1, "currency": "btc"}, # minimal
{"id": 2, "currency": "eth", "fee": "0.1", "amount": "100"}, # with fee/amount
{"id": 3, "currency": "ltc", "state": "4", "fee": None}, # failed state, fee None
{"id": 4, "currency": "doge", "amount": "-10", "memo": None}, # negative amount, tag None
{"id": 5, "currency": "ada", "address": "addr", "memo": "tag5", "chain": "ADA", "fee": "0"}, # all tags
]
for tx in txs:
codeflash_output = parser.parse_transaction(tx); parsed = codeflash_output # 53.8μs -> 40.3μs (33.5% faster)
if 'fee' in tx and tx['fee'] not in (None, ''):
pass
else:
pass
if 'amount' in tx and tx['amount'] not in (None, ''):
try:
expected_amount = float(tx['amount'])
except Exception:
expected_amount = None
else:
pass

codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

#------------------------------------------------
import copy
import datetime

function to test

from types import SimpleNamespace

imports

import pytest
from ccxt.digifinex import digifinex

We'll define a minimal digifinex class that implements parse_transaction and its dependencies,

as in the provided code. We'll also make sure to cover all the helper methods used.

class DigifinexMinimal:
# --- Helper methods and parse_transaction_status as per ccxt/digifinex.py ---
def safe_string(self, dictionary, key, default_value=None):
return str(dictionary[key]) if self.key_exists(dictionary, key) else default_value

def safe_string_upper(self, dictionary, key, default_value=None):
    if self.key_exists(dictionary, key):
        return str(dictionary[key]).upper()
    else:
        return default_value.upper() if default_value is not None else default_value

def safe_string_2(self, dictionary, key1, key2, default_value=None):
    return self.safe_either(self.safe_string, dictionary, key1, key2, default_value)

def safe_either(self, method, dictionary, key1, key2, default_value=None):
    value = method(dictionary, key1)
    return value if value is not None else method(dictionary, key2, default_value)

def key_exists(self, dictionary, key):
    if hasattr(dictionary, '__getitem__') and not isinstance(dictionary, str):
        if isinstance(dictionary, list) and type(key) is not int:
            return False
        try:
            value = dictionary[key]
            return value is not None and value != ''
        except LookupError:
            return False
    return False

def safe_number(self, obj, key, defaultNumber=None):
    value = self.safe_string(obj, key)
    return self.parse_number(value, defaultNumber)

def parse_number(self, value, default=None):
    if value is None:
        return default
    try:
        return float(value)
    except Exception:
        return default

def safe_currency_code(self, currencyId, currency=None):
    # For test purposes, just return the uppercase of currencyId
    if currencyId is None:
        return None
    return currencyId.upper()

def iso8601(self, timestamp=None):
    if timestamp is None:
        return None
    try:
        dt = datetime.datetime.utcfromtimestamp(timestamp / 1000)
        return dt.strftime('%Y-%m-%dT%H:%M:%S.%f')[:-3] + 'Z'
    except Exception:
        return None

def parse8601(self, timestamp=None):
    # Accepts 'YYYY-MM-DD HH:MM:SS' or 'YYYY-MM-DDTHH:MM:SS'
    if timestamp is None:
        return None
    try:
        if 'T' in timestamp:
            dt = datetime.datetime.strptime(timestamp, "%Y-%m-%dT%H:%M:%S")
        else:
            dt = datetime.datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
        return int(dt.replace(tzinfo=datetime.timezone.utc).timestamp() * 1000)
    except Exception:
        return None

def parse_transaction_status(self, status):
    statuses = {
        '1': 'pending',
        '2': 'pending',
        '3': 'ok',
        '4': 'failed',
    }
    return self.safe_string(statuses, status, status)

# --- The function under test ---
def parse_transaction(self, transaction, currency=None):
    id = self.safe_string_2(transaction, 'id', 'withdraw_id')
    address = self.safe_string(transaction, 'address')
    tag = self.safe_string(transaction, 'memo')
    txid = self.safe_string(transaction, 'hash')
    currencyId = self.safe_string_upper(transaction, 'currency')
    code = self.safe_currency_code(currencyId, currency)
    timestamp = self.parse8601(self.safe_string(transaction, 'created_date'))
    updated = self.parse8601(self.safe_string(transaction, 'finished_date'))
    status = self.parse_transaction_status(self.safe_string(transaction, 'state'))
    amount = self.safe_number(transaction, 'amount')
    feeCost = self.safe_number(transaction, 'fee')
    fee = None
    if feeCost is not None:
        fee = {'currency': code, 'cost': feeCost}
    network = self.safe_string(transaction, 'chain')
    return {
        'info': transaction,
        'id': id,
        'txid': txid,
        'timestamp': timestamp,
        'datetime': self.iso8601(timestamp),
        'network': network,
        'address': address,
        'addressTo': address,
        'addressFrom': None,
        'tag': tag,
        'tagTo': tag,
        'tagFrom': None,
        'type': None,
        'amount': amount,
        'currency': code,
        'status': status,
        'updated': updated,
        'internal': None,
        'comment': None,
        'fee': fee,
    }

Instantiate the minimal digifinex

digifinex = DigifinexMinimal()

------------------- UNIT TESTS -------------------

1. Basic Test Cases

def test_basic_deposit_transaction():
# Typical deposit transaction
tx = {
"id": "1171",
"currency": "xrp",
"hash": "ed03094b84eafbe4bc16e7ef766ee959885ee5bcb265872baaa9c64e1cf86c2b",
"chain": "",
"amount": 7.457467,
"address": "rae93V8d2mdoUQHwBDBdM4NHCMehRJAsbm",
"memo": "100040",
"fee": 0,
"state": "3",
"created_date": "2020-04-20 11:23:00",
"finished_date": "2020-04-20 13:23:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 53.4μs -> 54.4μs (1.78% slower)

def test_basic_withdraw_transaction():
# Typical withdraw response
tx = {
"code": 200,
"withdraw_id": "700"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 8.37μs -> 8.21μs (1.95% faster)

def test_basic_case_insensitive_currency():
# Currency should be uppercased
tx = {
"id": "1",
"currency": "btc",
"hash": "abc",
"amount": "0.5",
"fee": "0.001",
"state": "3",
"created_date": "2022-01-01 00:00:00",
"finished_date": "2022-01-01 01:00:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 41.5μs -> 41.5μs (0.043% slower)

2. Edge Test Cases

def test_missing_optional_fields():
# Transaction with missing optional fields
tx = {
"id": "2",
"currency": "eth",
"amount": "1.0",
"fee": "0.01",
"state": "1",
"created_date": "2022-01-01 00:00:00"
# missing: hash, address, memo, chain, finished_date
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 29.6μs -> 29.2μs (1.58% faster)

def test_null_and_empty_values():
# Transaction with null and empty string values
tx = {
"id": "",
"currency": "",
"hash": "",
"amount": None,
"fee": "",
"state": "",
"created_date": "",
"finished_date": ""
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 7.84μs -> 7.59μs (3.37% faster)

def test_unexpected_status_code():
# Unknown status code should be returned as is
tx = {
"id": "3",
"currency": "usdt",
"amount": "10",
"fee": "0.1",
"state": "99",
"created_date": "2022-01-01 00:00:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 32.0μs -> 33.1μs (3.07% slower)

def test_nonstandard_dates():
# Nonstandard date format should yield None for timestamp/updated
tx = {
"id": "4",
"currency": "ltc",
"amount": "1.2",
"fee": "0.02",
"state": "3",
"created_date": "not-a-date",
"finished_date": "2022-01-01T01:00:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 29.0μs -> 27.9μs (4.11% faster)

def test_fee_none():
# Fee is explicitly None
tx = {
"id": "5",
"currency": "ada",
"amount": "100",
"fee": None,
"state": "3",
"created_date": "2022-01-01 00:00:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 29.7μs -> 30.1μs (1.43% slower)

def test_amount_string_and_float():
# Amount as string and as float should both work
tx1 = {
"id": "6",
"currency": "doge",
"amount": "123.456",
"fee": "0.01",
"state": "3",
"created_date": "2022-01-01 00:00:00"
}
tx2 = copy.deepcopy(tx1)
tx2['amount'] = 123.456
codeflash_output = digifinex.parse_transaction(tx1); result1 = codeflash_output # 30.1μs -> 29.4μs (2.31% faster)
codeflash_output = digifinex.parse_transaction(tx2); result2 = codeflash_output # 19.7μs -> 19.9μs (0.830% slower)

def test_chain_network_field():
# chain field present
tx = {
"id": "7",
"currency": "usdt",
"amount": "1",
"fee": "0.1",
"state": "3",
"chain": "ERC20",
"created_date": "2022-01-01 00:00:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 27.9μs -> 27.3μs (2.01% faster)

def test_alternate_id_field():
# Only withdraw_id present
tx = {
"withdraw_id": "9999",
"currency": "btc",
"amount": "0.2",
"fee": "0.0005",
"state": "2",
"created_date": "2022-01-01 00:00:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 28.3μs -> 28.1μs (0.930% faster)

def test_currency_none():
# Currency field missing
tx = {
"id": "8",
"amount": "1",
"fee": "0.1",
"state": "3",
"created_date": "2022-01-01 00:00:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 27.8μs -> 27.4μs (1.43% faster)

def test_fee_zero():
# Fee is zero as string
tx = {
"id": "9",
"currency": "eth",
"amount": "2",
"fee": "0",
"state": "3",
"created_date": "2022-01-01 00:00:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 28.0μs -> 27.4μs (2.51% faster)

def test_tag_and_memo_fields():
# Tag/memo field present
tx = {
"id": "10",
"currency": "xrp",
"amount": "1",
"fee": "0.1",
"state": "3",
"memo": "5555",
"created_date": "2022-01-01 00:00:00"
}
codeflash_output = digifinex.parse_transaction(tx); result = codeflash_output # 28.2μs -> 28.3μs (0.314% slower)

3. Large Scale Test Cases

def test_large_scale_transactions():
# Test a list of 500 transactions with varying fields
transactions = []
for i in range(500):
tx = {
"id": str(i),
"currency": "usdt" if i % 2 == 0 else "btc",
"amount": str(i * 0.01),
"fee": str(i * 0.0001),
"state": str((i % 4) + 1),
"created_date": "2022-01-01 00:00:00",
"finished_date": "2022-01-01 01:00:00"
}
if i % 10 == 0:
tx["memo"] = str(i)
tx["chain"] = "ERC20"
transactions.append(tx)
results = [digifinex.parse_transaction(tx) for tx in transactions] # 45.1μs -> 45.8μs (1.58% slower)
# Check that all ids are correct and status is mapped as expected
for i, result in enumerate(results):
# Status mapping
expected_status = {1: "pending", 2: "pending", 3: "ok", 4: "failed"}[int((i % 4) + 1)]
if i % 10 == 0:
pass
else:
pass

def test_large_scale_missing_fields():
# 500 transactions, half missing currency, half missing fee
transactions = []
for i in range(500):
tx = {
"id": str(i),
"amount": str(i * 0.01),
"state": "3",
"created_date": "2022-01-01 00:00:00"
}
if i % 2 == 0:
tx["currency"] = "btc"
else:
tx["fee"] = str(i * 0.0001)
transactions.append(tx)
results = [digifinex.parse_transaction(tx) for tx in transactions] # 33.6μs -> 34.5μs (2.68% slower)
for i, result in enumerate(results):
if i % 2 == 0:
pass
else:
pass

To edit these changes git checkout codeflash/optimize-digifinex.parse_transaction-mhu2ta2p and push.

Codeflash

The optimization achieves a **20% speedup** by eliminating function call overhead and replacing expensive operations with more efficient Python idioms.

**Key Optimizations Applied:**

1. **Precompiled Regex for `parse8601`**: The most impactful change moves regex compilation from runtime to module-level initialization. Instead of compiling the regex pattern on every call (8.95ms in profiling), it's now precompiled as `_PARSE8601_TZ_REGEX`, reducing this to 2.37ms - a **73% improvement** in regex operations.

2. **Inlined Dictionary Lookups**: The `safe_string*` methods replaced `Exchange.key_exists()` function calls with direct `isinstance(dictionary, dict) and key in dictionary` checks. This eliminates function call overhead and uses Python's optimized dictionary membership testing, reducing `safe_string` execution time from 17.98ms to 8.23ms.

3. **Direct Key Access in `safe_string_2`**: Instead of calling `safe_either()` with nested function calls, it now performs direct `dictionary.get()` operations with immediate type checking, reducing execution time from 4.62ms to 1.39ms.

4. **Optimized ISO8601 Formatting**: Replaced complex string slicing and formatting operations with direct f-string interpolation (`f"{s}.{msec:03d}Z"`), improving readability and performance.

**Performance Impact by Test Case:**
- **Date parsing scenarios** see the largest gains (up to 54% faster) due to regex precompilation
- **Missing fields scenarios** benefit significantly (28-47% faster) from streamlined dictionary access
- **Large batch operations** show consistent 20% improvements, demonstrating scalability

**Why These Optimizations Work:**
- **Function call elimination**: Python function calls have significant overhead; inlining critical path operations provides substantial gains
- **Regex precompilation**: Compiling regex patterns is expensive; doing it once at module load rather than per call is a classic optimization
- **Dictionary access patterns**: Using `key in dict` is faster than custom existence checking functions
- **Reduced string operations**: Fewer string concatenations and slicing operations in hot paths

These optimizations are particularly beneficial since `parse_transaction` appears to be called frequently in cryptocurrency exchange operations where parsing speed directly impacts trading performance.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 11, 2025 04:33
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Nov 11, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant