@@ -88,7 +88,7 @@ def create_test_featureset(project, label_type='class'):
8888 fset_data = fixtures .sample_featureset (5 , 1 , features_to_use , targets )
8989 fset_path = pjoin (cfg ['paths' ]['features_folder' ],
9090 '{}.nc' .format (str (uuid .uuid4 ())))
91- fset_data .to_netcdf (fset_path , engine = cfg [ 'xr_engine' ] )
91+ fset_data .to_netcdf (fset_path )
9292 f , created = m .File .create_or_get (uri = fset_path )
9393 fset = m .Featureset .create (name = 'test_featureset' , file = f , project = project ,
9494 features_list = features_to_use ,
@@ -127,7 +127,7 @@ def create_test_model(fset, model_type='RandomForestClassifier'):
127127 "loss" : "hinge" },
128128 "LinearRegressor" : {
129129 "fit_intercept" : True }}
130- with featureset .from_netcdf (fset .file .uri , engine = cfg [ 'xr_engine' ] ) as fset_data :
130+ with featureset .from_netcdf (fset .file .uri ) as fset_data :
131131 model_data = build_model .build_model_from_featureset (fset_data ,
132132 model_type = model_type )
133133 model_path = pjoin (cfg ['paths' ]['models_folder' ],
@@ -157,12 +157,12 @@ def create_test_prediction(dataset, model):
157157 The model to use to create prediction.
158158
159159 """
160- with featureset .from_netcdf (model .featureset .file .uri , engine = cfg [ 'xr_engine' ] ) as fset_data :
160+ with featureset .from_netcdf (model .featureset .file .uri ) as fset_data :
161161 model_data = joblib .load (model .file .uri )
162162 pred_data = predict .model_predictions (fset_data .load (), model_data )
163163 pred_path = pjoin (cfg ['paths' ]['predictions_folder' ],
164164 '{}.nc' .format (str (uuid .uuid4 ())))
165- pred_data .to_netcdf (pred_path , engine = cfg [ 'xr_engine' ] )
165+ pred_data .to_netcdf (pred_path )
166166 f , created = m .File .create_or_get (uri = pred_path )
167167 pred = m .Prediction .create (file = f , dataset = dataset , project = dataset .project ,
168168 model = model , finished = datetime .datetime .now ())
0 commit comments