@@ -269,9 +269,9 @@ In the following the equations of Alex J. Cannon (2015) are shown and explained:
269269
270270**Multiplicative **:
271271
272- .. math ::
273-
274- X^{*QM}_{sim,p}(i) = F^{- 1 }_{obs,h} \Biggl\{ F_{sim,h} \left [ \frac { \mu {X_{sim,h}} \cdot X_{sim,p}(i)}{ \mu {X_{sim,p}(i)}} \right ] \Biggr \} \frac { \mu {X_{sim,p}(i)}}{ \mu {X_{sim,h}}}
272+ The formula is the same as for the additive variant, but the values are
273+ bound to the lower level of zero. The upper and lower boundary can be
274+ adjusted by passing the hidden arguments `` val_min `` and `` val_max ``.
275275
276276.. code-block :: python
277277 :linenos:
@@ -324,24 +324,20 @@ Preserve Changes in Quantiles and Extremes?"*
324324The following equations qre based on Alex J. Cannon (2015) but extended the
325325shift of :math: `X_{sim,p}(i)`:
326326
327- **Shift of value range **:
328-
329- .. math ::
330-
331- X_{sim,p}^{*DT}(i) = X_{sim,p}(i) + \Delta\mu
332-
333327**Additive **:
334328
335329 .. math ::
336330
337- X_{sim,p}^{*DQM}(i) = F_{obs,h}^{-1 }\left\{ F_{sim,h}\left [X_{sim,p}^{*DT}(i)\right ]\right \}
331+ X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) + \Delta\mu \\[ 1 pt]
332+ X_{sim,p}^{*DQM}(i) & = F_{obs,h}^{-1 }\left\{ F_{sim,h}\left [X_{sim,p}^{*DT}(i)\right ]\right \}
338333
339334
340335 **Multiplicative **:
341336
342337 .. math ::
343338
344- X^{*DQM}_{sim,p}(i) = F^{-1 }_{obs,h}\Biggl\{ F_{sim,h}\left [\frac {\mu {X_{sim,h}} \cdot X_{sim,p}^{*DT}(i)}{\mu {X_{sim,p}^{*DT}(i)}}\right ]\Biggr \}\frac {\mu {X_{sim,p}^{*DT}(i)}}{\mu {X_{sim,h}}}
339+ X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) \cdot \Delta\mu \\[ 1 pt]
340+ X^{*DQM}_{sim,p}(i) & = F^{-1 }_{obs,h}\Biggl\{ F_{sim,h}\left [\frac {\mu {X_{sim,h}} \cdot X_{sim,p}^{*DT}(i)}{\mu {X_{sim,p}^{*DT}(i)}}\right ]\Biggr \}\frac {\mu {X_{sim,p}^{*DT}(i)}}{\mu {X_{sim,h}}}
345341
346342
347343 .. code-block :: python
0 commit comments