@@ -55,6 +55,12 @@ for both additive and multiplicative Linear Scaling are shown:
5555
5656 X^{*LS}_{sim,p}(i) = X_{sim,p}(i) + \mu _{m}(X_{obs,h}(i)) - \mu _{m}(X_{sim,h}(i))
5757
58+ where:
59+
60+ .. math ::
61+
62+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
63+
5864 **Multiplicative **:
5965
6066 The multiplicative Linear Scaling differs from the additive variant in such
@@ -64,6 +70,12 @@ for both additive and multiplicative Linear Scaling are shown:
6470
6571 X^{*LS}_{sim,h}(i) = X_{sim,h}(i) \cdot \left [\frac {\mu _{m}(X_{obs,h}(i))}{\mu _{m}(X_{sim,h}(i))}\right ]
6672
73+ where:
74+
75+ .. math ::
76+
77+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
78+
6779
6880 .. code-block :: python
6981 :linenos:
@@ -119,6 +131,12 @@ deviation in the mean.
119131
120132 X^{*LS}_{sim,p}(i) = X_{sim,p}(i) + \mu _{m}(X_{obs,h}(i)) - \mu _{m}(X_{sim,h}(i))
121133
134+ where:
135+
136+ .. math ::
137+
138+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
139+
122140 **(2) ** In the second step, the time-series are shifted to a zero mean. This
123141enables the adjustment of the standard deviation in the following step.
124142
@@ -202,6 +220,12 @@ for both additive and multiplicative Delta Method are shown:
202220
203221 X^{*DM}_{sim,p}(i) = X_{obs,h}(i) + \mu _{m}(X_{sim,p}(i)) - \mu _{m}(X_{sim,h}(i))
204222
223+ where:
224+
225+ .. math ::
226+
227+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
228+
205229 **Multiplicative **:
206230
207231 The multiplicative variant behaves like the additive, but with the
@@ -212,6 +236,12 @@ for both additive and multiplicative Delta Method are shown:
212236
213237 X^{*DM}_{sim,p}(i) = X_{obs,h}(i) \cdot \left [\frac { \mu _{m}(X_{sim,p}(i)) }{ \mu _{m}(X_{sim,h}(i))}\right ]
214238
239+ where:
240+
241+ .. math ::
242+
243+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
244+
215245 .. code-block :: python
216246 :linenos:
217247 :caption: Example: Delta Method
@@ -325,10 +355,11 @@ Detrended Quantile Mapping
325355The Detrended Quantile Mapping bias correction technique can be used to minimize
326356distributional biases between modeled and observed time-series climate data like
327357the regular Quantile Mapping. Detrending means, that the values of
328- :math: `X_{sim,p}` are shifted by the mean of :math: `X_{sim,h}` before the
329- regular Quantile Mapping is applied. After the Quantile Mapping was applied, the
330- mean is shifted back. Since it does not make sense to take the whole mean to
331- rescale the data, the month-dependent long-term mean is used.
358+ :math: `X_{sim,p}` are shifted by the mean of :math: `X_{sim,p}` before the
359+ regular Quantile Mapping is applied. The shift is performed on a monthly basis.
360+ After the Quantile Mapping was applied, the mean is shifted back. Since it does
361+ not make sense to take the whole mean to rescale the data, the month-dependent
362+ long-term mean is used.
332363
333364This method must be applied on a 1-dimensional data set i.e., there is only one
334365time-series passed for each of ``obs ``, ``simh ``, and ``simp ``. This method
@@ -351,17 +382,26 @@ shift of :math:`X_{sim,p}(i)`:
351382
352383 .. math ::
353384
354- X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) + \Delta\mu \\[ 1 pt]
385+ X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) - \mu _m(X_{sim,p}(i)) \\[ 1 pt]
355386 X_{sim,p}^{*DQM}(i) & = F_{obs,h}^{-1 }\left\{ F_{sim,h}\left [X_{sim,p}^{*DT}(i)\right ]\right \}
356387
388+ where:
389+
390+ .. math ::
391+
392+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
357393
358394 **Multiplicative **:
359395
360396 .. math ::
361397
362- X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) \cdot \Delta\mu \\[ 1 pt]
363- X^{*DQM}_{sim,p}(i) & = F^{-1 }_{obs,h}\Biggl\{ F_{sim,h}\left [\frac {\mu {X_{sim,h}} \cdot X_{sim,p}^{*DT}(i)}{\mu {X_{sim,p}^{*DT}(i)}}\right ]\Biggr \}\frac {\mu {X_{sim,p}^{*DT}(i)}}{\mu {X_{sim,h}}}
398+ X^{*DQM}_{sim,p}(i) = F^{-1 }_{obs,h}\Biggl\{ F_{sim,h}\left [\frac {\mu _m(X_{sim,h}(i)) \cdot X_{sim,p}(i)}{\mu _m(X_{sim,p}(i))}\right ]\Biggr \}\frac {\mu _m(X_{sim,p}(i))}{\mu _m(X_{sim,h}(i))}
399+
400+ where:
401+
402+ .. math ::
364403
404+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
365405
366406 .. code-block :: python
367407 :linenos:
0 commit comments