| \n", + " | s | \n", + "c | \n", + "
|---|---|---|
| s | \n", + "214387.904762 | \n", + "7604.357143 | \n", + "
| c | \n", + "7604.357143 | \n", + "290.952381 | \n", + "
| \n", + " | s | \n", + "c | \n", + "
|---|---|---|
| s | \n", + "1.000000 | \n", + "0.962834 | \n", + "
| c | \n", + "0.962834 | \n", + "1.000000 | \n", + "
| \n", + " | pclass | \n", + "survived | \n", + "name | \n", + "sex | \n", + "age | \n", + "sibsp | \n", + "parch | \n", + "ticket | \n", + "fare | \n", + "cabin | \n", + "embarked | \n", + "boat | \n", + "body | \n", + "home.dest | \n", + "has_cabin_number | \n", + "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | \n", + "1.0 | \n", + "1.0 | \n", + "Allen, Miss. Elisabeth Walton | \n", + "female | \n", + "29.0000 | \n", + "0.0 | \n", + "0.0 | \n", + "24160 | \n", + "211.3375 | \n", + "B5 | \n", + "S | \n", + "2 | \n", + "NaN | \n", + "St Louis, MO | \n", + "1 | \n", + "
| 2 | \n", + "1.0 | \n", + "1.0 | \n", + "Allison, Master. Hudson Trevor | \n", + "male | \n", + "0.9167 | \n", + "1.0 | \n", + "2.0 | \n", + "113781 | \n", + "151.5500 | \n", + "C22 C26 | \n", + "S | \n", + "11 | \n", + "NaN | \n", + "Montreal, PQ / Chesterville, ON | \n", + "1 | \n", + "
| 3 | \n", + "1.0 | \n", + "0.0 | \n", + "Allison, Miss. Helen Loraine | \n", + "female | \n", + "2.0000 | \n", + "1.0 | \n", + "2.0 | \n", + "113781 | \n", + "151.5500 | \n", + "C22 C26 | \n", + "S | \n", + "NaN | \n", + "NaN | \n", + "Montreal, PQ / Chesterville, ON | \n", + "1 | \n", + "
| 4 | \n", + "1.0 | \n", + "0.0 | \n", + "Allison, Mr. Hudson Joshua Creighton | \n", + "male | \n", + "30.0000 | \n", + "1.0 | \n", + "2.0 | \n", + "113781 | \n", + "151.5500 | \n", + "C22 C26 | \n", + "S | \n", + "NaN | \n", + "135.0 | \n", + "Montreal, PQ / Chesterville, ON | \n", + "1 | \n", + "
| 5 | \n", + "1.0 | \n", + "0.0 | \n", + "Allison, Mrs. Hudson J C (Bessie Waldo Daniels) | \n", + "female | \n", + "25.0000 | \n", + "1.0 | \n", + "2.0 | \n", + "113781 | \n", + "151.5500 | \n", + "C22 C26 | \n", + "S | \n", + "NaN | \n", + "NaN | \n", + "Montreal, PQ / Chesterville, ON | \n", + "1 | \n", + "
| \n", + " | pclass | \n", + "survived | \n", + "age | \n", + "sibsp | \n", + "parch | \n", + "fare | \n", + "body | \n", + "has_cabin_number | \n", + "
|---|---|---|---|---|---|---|---|---|
| pclass | \n", + "0.701969 | \n", + "-0.127248 | \n", + "-3.954605 | \n", + "0.053090 | \n", + "0.013287 | \n", + "-24.227788 | \n", + "-2.876653 | \n", + "-0.249992 | \n", + "
| survived | \n", + "-0.127248 | \n", + "0.236250 | \n", + "-0.314343 | \n", + "-0.014088 | \n", + "0.034776 | \n", + "6.146023 | \n", + "0.000000 | \n", + "0.061406 | \n", + "
| age | \n", + "-3.954605 | \n", + "-0.314343 | \n", + "165.850021 | \n", + "-2.559806 | \n", + "-1.459378 | \n", + "114.416613 | \n", + "81.622922 | \n", + "1.463138 | \n", + "
| sibsp | \n", + "0.053090 | \n", + "-0.014088 | \n", + "-2.559806 | \n", + "1.085052 | \n", + "0.336833 | \n", + "8.641768 | \n", + "-8.708471 | \n", + "-0.003946 | \n", + "
| parch | \n", + "0.013287 | \n", + "0.034776 | \n", + "-1.459378 | \n", + "0.336833 | \n", + "0.749195 | \n", + "9.928031 | \n", + "4.237190 | \n", + "0.013316 | \n", + "
| fare | \n", + "-24.227788 | \n", + "6.146023 | \n", + "114.416613 | \n", + "8.641768 | \n", + "9.928031 | \n", + "2678.959738 | \n", + "-179.164684 | \n", + "10.976961 | \n", + "
| body | \n", + "-2.876653 | \n", + "0.000000 | \n", + "81.622922 | \n", + "-8.708471 | \n", + "4.237190 | \n", + "-179.164684 | \n", + "9544.688567 | \n", + "3.625689 | \n", + "
| has_cabin_number | \n", + "-0.249992 | \n", + "0.061406 | \n", + "1.463138 | \n", + "-0.003946 | \n", + "0.013316 | \n", + "10.976961 | \n", + "3.625689 | \n", + "0.174613 | \n", + "
| \n", + " | pclass | \n", + "survived | \n", + "age | \n", + "sibsp | \n", + "parch | \n", + "fare | \n", + "body | \n", + "has_cabin_number | \n", + "
|---|---|---|---|---|---|---|---|---|
| pclass | \n", + "1.000000 | \n", + "-0.312469 | \n", + "-0.366370 | \n", + "0.060832 | \n", + "0.018322 | \n", + "-0.558629 | \n", + "-0.034642 | \n", + "-0.713857 | \n", + "
| survived | \n", + "-0.312469 | \n", + "1.000000 | \n", + "-0.050199 | \n", + "-0.027825 | \n", + "0.082660 | \n", + "0.244265 | \n", + "NaN | \n", + "0.302250 | \n", + "
| age | \n", + "-0.366370 | \n", + "-0.050199 | \n", + "1.000000 | \n", + "-0.190747 | \n", + "-0.130872 | \n", + "0.171892 | \n", + "0.059059 | \n", + "0.271887 | \n", + "
| sibsp | \n", + "0.060832 | \n", + "-0.027825 | \n", + "-0.190747 | \n", + "1.000000 | \n", + "0.373587 | \n", + "0.160238 | \n", + "-0.099961 | \n", + "-0.009064 | \n", + "
| parch | \n", + "0.018322 | \n", + "0.082660 | \n", + "-0.130872 | \n", + "0.373587 | \n", + "1.000000 | \n", + "0.221539 | \n", + "0.051099 | \n", + "0.036806 | \n", + "
| fare | \n", + "-0.558629 | \n", + "0.244265 | \n", + "0.171892 | \n", + "0.160238 | \n", + "0.221539 | \n", + "1.000000 | \n", + "-0.043110 | \n", + "0.507253 | \n", + "
| body | \n", + "-0.034642 | \n", + "NaN | \n", + "0.059059 | \n", + "-0.099961 | \n", + "0.051099 | \n", + "-0.043110 | \n", + "1.000000 | \n", + "0.083796 | \n", + "
| has_cabin_number | \n", + "-0.713857 | \n", + "0.302250 | \n", + "0.271887 | \n", + "-0.009064 | \n", + "0.036806 | \n", + "0.507253 | \n", + "0.083796 | \n", + "1.000000 | \n", + "
5 rows × 33 columns
\n", "" ], "text/plain": [ - " id diagnosis radius_mean texture_mean perimeter_mean area_mean \\\n", - "0 842302 M 17.99 10.38 122.80 1001.0 \n", - "1 842517 M 20.57 17.77 132.90 1326.0 \n", - "2 84300903 M 19.69 21.25 130.00 1203.0 \n", - "3 84348301 M 11.42 20.38 77.58 386.1 \n", - "4 84358402 M 20.29 14.34 135.10 1297.0 \n", - "\n", - " smoothness_mean compactness_mean concavity_mean concave points_mean \\\n", - "0 0.11840 0.27760 0.3001 0.14710 \n", - "1 0.08474 0.07864 0.0869 0.07017 \n", - "2 0.10960 0.15990 0.1974 0.12790 \n", - "3 0.14250 0.28390 0.2414 0.10520 \n", - "4 0.10030 0.13280 0.1980 0.10430 \n", - "\n", - " ... texture_worst perimeter_worst area_worst smoothness_worst \\\n", - "0 ... 17.33 184.60 2019.0 0.1622 \n", - "1 ... 23.41 158.80 1956.0 0.1238 \n", - "2 ... 25.53 152.50 1709.0 0.1444 \n", - "3 ... 26.50 98.87 567.7 0.2098 \n", - "4 ... 16.67 152.20 1575.0 0.1374 \n", - "\n", - " compactness_worst concavity_worst concave points_worst symmetry_worst \\\n", - "0 0.6656 0.7119 0.2654 0.4601 \n", - "1 0.1866 0.2416 0.1860 0.2750 \n", - "2 0.4245 0.4504 0.2430 0.3613 \n", - "3 0.8663 0.6869 0.2575 0.6638 \n", - "4 0.2050 0.4000 0.1625 0.2364 \n", - "\n", - " fractal_dimension_worst Unnamed: 32 \n", - "0 0.11890 NaN \n", - "1 0.08902 NaN \n", - "2 0.08758 NaN \n", - "3 0.17300 NaN \n", - "4 0.07678 NaN \n", + " id diagnosis ... fractal_dimension_worst Unnamed: 32\n", + "0 842302 M ... 0.11890 NaN\n", + "1 842517 M ... 0.08902 NaN\n", + "2 84300903 M ... 0.08758 NaN\n", + "3 84348301 M ... 0.17300 NaN\n", + "4 84358402 M ... 0.07678 NaN\n", "\n", "[5 rows x 33 columns]" ] @@ -294,7 +348,7 @@ "metadata": { "tags": [] }, - "execution_count": 1 + "execution_count": 19 } ] }, @@ -315,17 +369,17 @@ "metadata": { "id": "86MHoPJon_aC", "colab_type": "code", - "outputId": "d4d9f1cd-c63c-4623-954e-11a61d1e3ced", "colab": { "base_uri": "https://localhost:8080/", - "height": 261 - } + "height": 241 + }, + "outputId": "f19996dd-29f0-4a2a-8489-1c12dea4e2c3" }, "source": [ - "df = df.drop('diagnosis', axis=1)\n", - "df.head()" + "df_u = df.drop(['id', 'diagnosis', 'Unnamed: 32'], axis=1)\n", + "df_u.head()" ], - "execution_count": 0, + "execution_count": 20, "outputs": [ { "output_type": "execute_result", @@ -349,7 +403,6 @@ " \n", "5 rows × 32 columns
\n", "" ], "text/plain": [ - " id radius_mean texture_mean perimeter_mean area_mean \\\n", - "0 842302 17.99 10.38 122.80 1001.0 \n", - "1 842517 20.57 17.77 132.90 1326.0 \n", - "2 84300903 19.69 21.25 130.00 1203.0 \n", - "3 84348301 11.42 20.38 77.58 386.1 \n", - "4 84358402 20.29 14.34 135.10 1297.0 \n", - "\n", - " smoothness_mean compactness_mean concavity_mean concave points_mean \\\n", - "0 0.11840 0.27760 0.3001 0.14710 \n", - "1 0.08474 0.07864 0.0869 0.07017 \n", - "2 0.10960 0.15990 0.1974 0.12790 \n", - "3 0.14250 0.28390 0.2414 0.10520 \n", - "4 0.10030 0.13280 0.1980 0.10430 \n", + " radius_mean texture_mean ... symmetry_worst fractal_dimension_worst\n", + "0 17.99 10.38 ... 0.4601 0.11890\n", + "1 20.57 17.77 ... 0.2750 0.08902\n", + "2 19.69 21.25 ... 0.3613 0.08758\n", + "3 11.42 20.38 ... 0.6638 0.17300\n", + "4 20.29 14.34 ... 0.2364 0.07678\n", "\n", - " symmetry_mean ... texture_worst perimeter_worst area_worst \\\n", - "0 0.2419 ... 17.33 184.60 2019.0 \n", - "1 0.1812 ... 23.41 158.80 1956.0 \n", - "2 0.2069 ... 25.53 152.50 1709.0 \n", - "3 0.2597 ... 26.50 98.87 567.7 \n", - "4 0.1809 ... 16.67 152.20 1575.0 \n", - "\n", - " smoothness_worst compactness_worst concavity_worst concave points_worst \\\n", - "0 0.1622 0.6656 0.7119 0.2654 \n", - "1 0.1238 0.1866 0.2416 0.1860 \n", - "2 0.1444 0.4245 0.4504 0.2430 \n", - "3 0.2098 0.8663 0.6869 0.2575 \n", - "4 0.1374 0.2050 0.4000 0.1625 \n", - "\n", - " symmetry_worst fractal_dimension_worst Unnamed: 32 \n", - "0 0.4601 0.11890 NaN \n", - "1 0.2750 0.08902 NaN \n", - "2 0.3613 0.08758 NaN \n", - "3 0.6638 0.17300 NaN \n", - "4 0.2364 0.07678 NaN \n", - "\n", - "[5 rows x 32 columns]" + "[5 rows x 30 columns]" ] }, "metadata": { "tags": [] }, - "execution_count": 2 + "execution_count": 20 } ] }, @@ -562,69 +641,969 @@ "metadata": { "id": "U92Y3jNKPpjJ", "colab_type": "code", - "colab": {} - }, - "source": [ - "# Perform K-Means Clustering on the Dataset" - ], - "execution_count": 0, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7ghqYSxrP_FE", - "colab_type": "text" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 295 + }, + "outputId": "2aaf68b4-0032-4059-a218-dea823bbc62b" }, "source": [ - "## Check you work: \n", + "# Perform K-Means Clustering on the Dataset\n", + "sum_of_squared_distances = []\n", + "K = range(1,10)\n", + "for k in K:\n", + " km = KMeans(n_clusters=k)\n", + " km = km.fit(df_u)\n", + " sum_of_squared_distances.append(km.inertia_)\n", "\n", - "This is something that in a truly unsupervised learning situation **WOULD NOT BE POSSIBLE**. But for educational purposes go back and grab the true diagnosis column (label) from the original dataset. Take your cluster labels and compare them to the original diagnosis column. You can make scatterplots for each to see how they compare or you can calculate a percent accuracy score like: \n", - "\\begin{align}\n", - "\\frac{\\text{Num Correct Labels}}{\\text{Num Total Observations}}\n", - "\\end{align}" + "plt.plot(K, sum_of_squared_distances, 'bx-')\n", + "plt.xlabel('k')\n", + "plt.ylabel('Sum_of_squared_distances')\n", + "plt.title('Elbow Method For Optimal k')\n", + "plt.show()" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEWCAYAAACEz/viAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZhcZZn+8e+dBUgIeyJLgoRNIChrwg4mUBFkEBQRwQXBhRmMisLACIoLDqOiP8YFARlAFhVkEUUEhECzb+nEBAMohD0QoFlDAAkJz++P95SpdHqp06nqU9V1f67rXFV1zqmqpytQT513eV5FBGZm1toGFR2AmZkVz8nAzMycDMzMzMnAzMxwMjAzM5wMzMwMJwPrhaTDJd1e8TgkbVJkTLVSy79F0uOSSrV4raJJ+qSk6+v02jdL+nw3x74j6df1eF/rnZOBlb/I3pS0oGI7vei44F/JKCT9b6f9B2T7z6/ydbr9Eqo3SedLWtjp8/14jV57RUnfl/Rk9m/4sKTjJKnK54/NPsch5X0R8ZuI+EAt4rPmMaT3U6xFfCgiphYdRDceAQ6WdFxELMr2fQZ4qMCY8jo1Ir7Z1ydLGlLxt1e6DFgH2Bf4OzAeuAhYH/hKX9/PWo+vDKwv9pX0qKQXJP1I0iAASYMkfVPSE5Kel3ShpNWyYxdIOja7Pzr7NTole7yxpJfKr9OFZ4G/AXtn568J7AJcVXmSpJ0k3SnpFUmzJE3M9p8C7A6c3sVVTyn7Nf2KpF+Uf1H39Ldkxz+dHXtR0jf6+kFK+oKkOdnff5Wk9SqOhaQpkh4GHu7iuXsBHwA+GhGzI2JRRNwNfAqYUm4Cy66Kvi/pXknzJf0x+wwBbs1uX8k+m527aRr8YvY5vSbpe9m/2Z3Z610qaYXs3DUkXS2pQ9LL2f0xffhchkq6WNIV5de2+nIysL74COkX6HbAAcBns/2HZ9skYCNgBFD+4r0FmJjdfz/wKLBHxePbIuKdHt7zQuCw7P4hwB+Bt8oHJY0G/gz8N7Am8J/AFZJGRcQ3gNuAL0XEiIj4UsXr7gdMALYCDiZLOD39LZLGAWcCnwbWA9YC+vKFtyfw/ex91wWeAC7pdNqHgR2BcV28xGTgnoh4qnJnRNwDzAX2qth9GOnfaV1gEfCzbH/532D17LO5q5tw9wa2B3YCjgfOJiWd9YH3Aodm5w0CfgVsALwbeJMl/w1URdIw4A+kf9+DI2Jhnudb3zRtMpB0XvaLbXYV575bUpukv0q6T9K+/RFjk/lD9uu4vH2hh3N/GBEvRcSTwE9Y8kXwSeC0iHg0IhYAJwCHZO3RtwC7Zb/+9wBOBXbNnvf+7HhPrgQmZr/ODyMlh0qfAq6JiGsi4p2IuAFoJzWf9OQHEfFK9re0AdtU8bccBFwdEbdGxFvASUBPiQzgPys+2xcq3uO8iJiRvc4JwM6SxlY87/vZZ/1mF685EpjXzfvNy46XXZRdPbyexXuwpMG9xFzp1IiYHxH3A7OB67PP5lXgWmBbgIh4MSKuiIg3IuI14BTSv2+1VgWuIzUNHhERi3M815ZD0yYD4HxgnyrP/SZwaURsS/pVeUa9gmpiH46I1Su2/+vh3Mpfok+Qfh2T3T7R6dgQYO2IeAR4nfRluztwNfCMpM2oIhlkX4Z/Jv1brhURd3Q6ZQPgY5UJDdiN9Eu4J89W3H+DdAXQ49+SHfvXZ5B9wb7Yy/v8uOKzLX9JL/UeWdJ5ERhd8bylfvV38gLd/33rZse7ep0ngKEsnSx681zF/Te7eDwCQNJwSb/MmtDmk5qhVs+ReHYiXaX9IFxFs181bTKIiFuBlyr3Ze2Y10maLuk2SZuXTyf94gBYDXimH0MdiNavuP9ulnyez5C+lCuPLWLJF8ctpF/VK0TE09njzwBrADOreN8LgWOBroYfPkX69VuZ0FaOiB9kx/N+sfT0t8yj4jOQNJzUVJTXUu8haeXsdZ6uOKenuKcCO0qq/PdA0o5ZfDdV7O78b/Y2KVnU+gv3WGAzYMeIWJUlzVBVjW4Cric1nd0oae0ax2Y9aNpk0I2zgS9HxPakNuPyFcB3gE9JmgtcA3y5mPAGjOOyjsL1gaOB32X7Lwa+JmlDSSOA/wF+VzEK5hbgSyzptLw5e3x7lc0Bt5DayX/exbFfAx+StLekwZJWkjSxovPyOVLbf7V6+lsuB/aTtFvWuXkyfft/6WLgCEnbSFoxe497IuLxap6cjf66kdQ3smX2d+9E+izOjIjKTudPSRqXJa6Tgcuzz7yD1MSV57PpySqkK4VXsk7qb+d9gYg4FfgtKSHkuXqx5TBgkkH2P+wuwGWSZgK/ZMkl9KHA+RExhtSGfJG6H7nSqv6kpcfBX9nDuX8EppN+zf8ZODfbfx5pWOOtwGPAP1k68d5C+rIoJ4PbgeEVj3sUyY0R8VIXx54idWafSPqCewo4jiX/jf8UOCgb4fKzzs/vQrd/S9ZuPoX0hTUPeJnUYZtL9mV+EnBF9jobk5ox8/goqa/jOmABKRGcy7I/eC4iNa0+C6xENuw0It4gtevfkTWv7ZT37+jkJ8Aw0lXH3VlcuUXE90idyFMrRj5ZHamZm+WyjrarI+K9klYF/hERy7ShSrof2Kc86kLSo8BOEfF8f8ZrVgRJNwO/johzio7FGteA+XUcEfOBxyR9DEDJ1tnhJ8mG2UnagvTLqKOQQM3MGlDTJgNJFwN3AZtJmivpc6Shep+TNAu4n9RsAKlT6wvZ/ouBwz1SwcxsiaZuJjIzs9po2isDMzOrnaYsVDdy5MgYO3Zs0WGYmTWV6dOnvxARo7o61pTJYOzYsbS3txcdhplZU5H0RHfH3ExkZmZOBmZm5mRgZmY4GZiZGU4GZmZGiySDU0+Ftral97W1pf1mZtYiyWDCBDj44CUJoa0tPZ4wodi4zMwaRVPOM8hr0iS49FI48EDYfHOYMyc9njSp6MjMzBpDS1wZQPri3203uPtuOOggJwIzs0otkwza2uDOO9P9iy5atg/BzKyV1TUZSFpfUpukByTdL+noLs6ZKOlVSTOz7Vu1jqPcR3D55bDppvC+9y3dh2Bm1urqfWWwCDg2IsYBOwFTJI3r4rzbImKbbDu51kFMm7akj6BUgtmz4be/TfvNzKzOySAi5kXEjOz+a8CDwOh6vmdXjj9+SR9BqQQLFsDw4Wm/mZn1Y59Btl7xtsA9XRzeWdIsSddK2rKecUyaBBJMnVrPdzEzay79kgwkjQCuAL6arVVcaQawQURsDfwc+EM3r3GkpHZJ7R0dfV++eI01YPx4uOGGPr+EmdmAU/dkIGkoKRH8JiJ+3/l4RMyPiAXZ/WuAoZJGdnHe2RExPiLGjxrV5doMVSuV0hDT+Z3TkplZi6r3aCIB5wIPRsRp3ZyzTnYeknbIYnqxnnGVSrB4Mdx6az3fxcysedR7BvKuwKeBv0mame07EXg3QEScBRwEHCVpEfAmcEhERD2D2mUXGDYs9Rvst18938nMrDnUNRlExO2AejnndOD0esbR2Uorwe67uxPZzKysZWYgd1Yqwf33w7x5RUdiZla8lk4G4KsDMzNo4WSw9daw1lpOBmZm0MLJYNAg2GuvlAzq211tZtb4WjYZQGoqeuYZ+Pvfi47EzKxYLZ0MJk9Ot24qMrNW19LJYOxY2HhjJwMzs5ZOBpCaitraYNGioiMxMyuOk0EJXnsN7r236EjMzIrT8snAJa3NzJwMWGst2G47JwMza20tnwwgjSq66660ApqZWStyMiD1Gyxa5JLWZta6nAyAXXdNlUzdVGRmrcrJgJQIdtvNS2GaWetyMsiUSjB7Njz7bNGRmJn1PyeDTLmk9Y03FhuHmVkRnAwy22wDa67pfgMza01OBpnBg13S2sxal5NBhVIJ5s6Fhx4qOhIzs/7lZFDBS2GaWatyMqiw0Uaw4YYeYmpmrcfJoBOXtDazVlR1MpC0q6SVs/ufknSapA3qF1oxSiWYPx/a24uOxMys/+S5MjgTeEPS1sCxwCPAhXWJqkB77umS1mbWevIkg0UREcABwOkR8QtglfqEVZyRI2HbbZ0MzKy15EkGr0k6Afg08GdJg4Ch9QmrWKUS3HknvP560ZGYmfWPPMng48BbwGcj4llgDPCjukRVsFIJ3n7bJa3NrHVUnQyyBHAFsGK26wXgynoEVbTddoMVV3RTkZm1jjyjib4AXA78Mts1GvhDPYIq2rBhaY0DJwMzaxV5mommALsC8wEi4mHgXfUIqhGUSnDfffDcc0VHYmZWf3mSwVsRsbD8QNIQoMeSbpLWl9Qm6QFJ90s6uotzJOlnkuZIuk/SdjliqpvJk9PtTTcVG4eZWX/IkwxukXQiMEzSZOAy4E+9PGcRcGxEjAN2AqZIGtfpnA8Cm2bbkaT5DIXbdltYYw03FZlZa8iTDL4OdAB/A/4duAb4Zk9PiIh5ETEju/8a8CCpr6HSAcCFkdwNrC5p3Rxx1cXgwWkC2g03uKS1mQ18eZLBMOC8iPhYRBwEnJftq4qkscC2wD2dDo0Gnqp4PJdlE0YhSiV46il4+OGiIzEzq688yeBGlv7yHwZU1YgiaQRpWOpXI2J+jvesfI0jJbVLau/o6OjLS+TmktZm1iryJIOVImJB+UF2f3hvT5I0lJQIfhMRv+/ilKeB9Ssej8n2LSUizo6I8RExftSoUTnC7ruNN4YNNnAyMLOBL08yeL1ypI+k7YE3e3qCJAHnAg9GxGndnHYVcFg2qmgn4NWImJcjrrqR0qiim26CxYuLjsbMrH6G5Dj3q8Blkp4BBKxDKlHRk11JtYz+Jmlmtu9E4N0AEXEWqSN6X2AO8AZwRI6Y6q5UgnPOgenTYYcdio7GzKw+qk4GETFN0ubAZtmuf0TE270853ZS4ujpnCBNaGtIe+6ZbqdOdTIws4Er70pnE4CtgO2AQyUdVvuQGsuoUbDNNl4K08wGtqqvDCRdBGwMzATKLejBAFzgprNSCX72s1TSeuWVi47GzKz28vQZjAfGZc06LaVUgh//GG6/Hfbeu+hozMxqL08z0WxSp3HL2X13WGEFDzE1s4Erz5XBSOABSfeSFrkBICL2r3lUDWb4cJe0NrOBLU8y+E69gmgGpRJ84xvQ0ZE6lc3MBpI8K53d0tVWz+AaSbk0hUtam9lAlGels50kTZO0QNJCSYsl9anOUDPafntYbTUPMTWzgSlPB/LpwKHAw6QidZ8HflGPoBqRS1qb2UCWa9JZRMwBBkfE4oj4FbBPfcJqTKUSPPkkPPJI0ZGYmdVWng7kNyStAMyUdCowj/wzmJtaeSnMqVNhk02KjcXMrJbyfJl/Ojv/S8DrpLLTB9YjqEa1ySbw7nd7iKmZDTx5ksGHI+KfETE/Ir4bEccA+9UrsEYkpaYil7Q2s4EmTzL4TBf7Dq9RHE2jVIKXX4YZM4qOxMysdnrtM5B0KPAJYENJV1UcWhV4qV6BNarKktYTJhQbi5lZrVTTgXwnqbN4JPD/Kva/BtxXj6Aa2dprw1ZbpWRwwglFR2NmVhu9NhNFxBMRcTNQAm7LZh3PI61V3OPCNQNVqZQqmL7xRtGRmJnVRp4+g1uBlSSNBq4njS46vx5BNbrJk2HhQrjjjqIjMTOrjTzJQBHxBmk46RkR8TFgy/qE1dh23x2GDvUQUzMbOHIlA0k7A58E/pztG1z7kBrfyivDLru4TpGZDRx5ksFXgROAKyPifkkbAW31CavxlUrw17/CCy8UHYmZ2fLLW8J6/4j4Yfb40Yj4Sv1Ca2wuaW1mA0k18wx+EhFflfQnYJl6na2w0llXxo9PJa2nToWDDy46GjOz5VPNPIOLstsf1zOQZjNkCEya5E5kMxsYek0GETE9u22ZVc2qVSrBH/4Ajz4KG21UdDRmZn1XTTPR3+iieagsIraqaURNpNxvMHUqHHlksbGYmS2PapqJypVJp2S35WajT9FDkmgF73kPjBmThpg6GZhZM6ummegJAEmTI2LbikP/JWkG8PV6BdfoyiWtr7oqlbQe3JKzLsxsIMg76WzXige75Hz+gFQqwUsvwcyZRUdiZtZ3eZa9/BxwnqTVssevAJ+tfUjNZa+90u3UqbD99sXGYmbWV3kmnU2PiK2BrYGtI2KbiPjXEi+Sulr8ZsBbZx143/s8xNTMmlvuZp6IeDUiXu3i0NGdd0g6T9LzkmZ39VqSJkp6VdLMbPtW3ngaQakEt90Gb75ZdCRmZn1Tyzb/rtY2OB/Yp5fn3ZZdZWwTESfXMJ5+UyrBW2+5pLWZNa9aJoOuSlXcSgssjbnHHmlGspuKzKxZ1fvKoBo7S5ol6VpJTbk+wogRsPPOTgZm1rxqmQz60kgyA9gg65j+OfCH7k6UdKSkdkntHR0dfY2xbkolmDEDXnyx6EjMzPJTRM+TiCUd09PxiDitl+ePBa6OiPf2Goz0ODA+InpcJWD8+PHR3t7e28v1q7vuSgveXHYZHHRQ0dGYmS1L0vSIGN/VsWquDFbJtvHAUcDobPsPYLvlDGwdScru75DF05S/rSdMgFVWcVORmTWnaspRfBdA0q3AdhHxWvb4OyxZ/rJLki4GJgIjJc0Fvg0MzV73LOAg4ChJi4A3gUOit0uVBuWS1mbWzPLMQF4bWFjxeGG2r1sRcWgvx08HTs8RQ0Mr1yl67DHYcMOiozEzq16eDuQLgXslfSe7KrgHuKAuUTWpypLWZmbNJE85ilOAI4CXs+2IiPifegXWjDbfHNZbz8nAzJpP3qGlw4H5EfFTYK4kN4ZUKJe0vvFGeOedoqMxM6te1clA0reB/wJOyHYNBX5dj6Ca2eTJaa7BrFlFR2JmVr08VwYfAfYHXgeIiGdIQ06tQmVJazOzZpEnGSzMhn0GgKSV6xNSc1t3Xdhyy7QUpplZs8iTDC6V9EtgdUlfAKYC/1efsJpbuaT1P/9ZdCRmZtWpKhlks4R/B1wOXAFsBnwrIn5ex9iaVqmUEsGddxYdiZlZdaqadBYRIemaiHgf4AaQXrz//TB4cOo32HPPoqMxM+tdnmaiGZIm1C2SAWSVVWCnndyJbGbNI08y2BG4S9Ijku6T9DdJ99UrsGY3eTK0t8PLLxcdiZlZ7/Ikg72BjYE9gQ8B+2W31oVSCSKgra3oSMzMepenHMUTEfEEqbpoVGzWhR12SCugeYipmTWDPDOQ95f0MPAYcAvwOHBtneJqekOHwsSJ7jcws+aQp5noe8BOwEMRsSGwF3B3XaIaIEolmDMHHn+86EjMzHqWJxm8HREvAoMkDYqINtLqZ9aNcknrG28sNg4zs97kSQavSBoB3Ar8RtJPyeoUWdfGjUvlKdxUZGaNLk8yOIDUefw14DrgETyaqEcuaW1mzSLPaKLXI2JxRCyKiAsi4mdZs5H1oFSCjg64zzMyzKyB5RlN9Jqk+dn2T0mLJc2vZ3ADgUtam1kzyHNlsEpErBoRqwLDgI8CZ9QtsgFi9GjYYgsnAzNrbHmXvQRS4bqI+ANpVrL1olSCW2+Ft94qOhIzs67laSY6sGI7SNIPAFfsr0KpBG++CXfdVXQkZmZdq6qEdaZy5NAi0gzkA2oazQA1ceKSktYTJxYdjZnZsqpOBhFxRD0DGchWXRV23DElg//+76KjMTNbVtXJQNLPejoeEV9Z/nAGrlIpJYKXX4Y11ig6GjOzpeXpQF4J2A54ONu2AVYApmeb9aBUShPPbr656EjMzJaVp89gK2C3iFgEIOks4LaI+I+6RDbA7LgjrLxyair6yEeKjsbMbGl5rgzWAFateDwi22dVWGGFtDay5xuYWSPKkwx+APxV0vmSLgBmAP9Tn7AGpsmT4aGH4Mkni47EzGxpeWYg/4q0DvKVwO+BnSPignoFNhC5pLWZNao8k852BV6LiD8CqwDHS9qgl+ecJ+l5SbO7OS5JP5M0R9J9krbLFX2T2XJLWHttL4VpZo0nTzPRmcAbkrYGjiGVsL6wl+ecD+zTw/EPAptm25HZewxY5ZLWU6e6pLWZNZY8yWBRRARp1vEvIuIXpCuEbkXErcBLPZxyAHBhVuvobmB1SevmiKnplEtaz+7yWsnMrBh5ksFrkk4APgX8WdIgYOhyvv9o4KmKx3OzfQOWS1qbWSPKkww+DrwFfC4ingXGAD+qS1RdkHSkpHZJ7R0dHf31tjW3/vqw2WZOBmbWWPKMJno2Ik6LiNuyx09GxL/6DCT1pSbn08D6FY/HZPu6ev+zI2J8RIwfNWpUH96qcUyeDLfcAgsXFh2JmVnSp/UMurFSH55zFXBYNqpoJ+DViJhXw5gaUqkEb7wBd99ddCRmZkmechS9ic47JF0MTARGSpoLfJusnyEizgKuAfYF5gBvAC1RGXXiRBg0KA0x3WOPoqMxM6ttMlhGRBzay/EAptQzhka02mqwww6p3+B73ys6GjOzKpqJJK1Y5WtpOWNpKaUS3HsvvPpq0ZGYmVXXZ3AXgKSLejnv08sfTutwSWszayTVNBOtIOkTwC6SDux8MCJ+n916GlUOO+8Mw4enpqIDvHiomRWsmmTwH8AngdVZeh1kSJ3Gv691UK3AJa3NrJH0mgwi4nbgdkntEXFuP8TUMkolOPZYmDsXxowpOhoza2V55hlcJOkrki7Pti9LWt5yFC2tXNLaVwdmVrQ8yeAMYPvs9gzSesgDuspovb33vfCudzkZmFnx8swzmBARW1c8vknSrFoH1EoGDUqF66ZOhYhU4trMrAh5rgwWS9q4/EDSRsDi2ofUWkoleO45uP/+oiMxs1aWJxkcB7RJulnSLcBNwLH1Cas1nHpqGl4KS5qK2trSfjOz/lR1M1FE3ChpU2CzbNc/IuKt8nFJkyPCCzrmMGECHHxwGkk0dSpsvXV6fOmlRUdmZq1GqTxQDV5ImhER/bKG8fjx46O9vb0/3qru2tpg331h8WJYZRW4/HKYNKnoqMxsIJI0PSLGd3WsliWs3f3ZB5MmwSGHwNtvp7LWTz6ZOpPNzPpTLZOBv8L6oK0Nrr4ajjoKFi2Cww+HffaBxx8vOjIzayW1TAaWU1vbkj6CM86A666DESPg1lthyy3hJz9JzUdmZvVWy2TweA1fqyVMm5YSQbmPYK+94Kqr4GtfSwvgfO1rsOuuMNslAM2szqruQJY0GPg3YCwVo5Ai4rS6RNaDgdSB3J0IuPhiOProtObBCSfAiSfCitWuLmFm1kmtOpD/BBwOrAWsUrFZHUjwiU/Agw+mpqSTT4bttoO77io6MjMbiPKUoxgTEVvVLRLr0siR8Otfwyc/Cf/+76nZ6MtfhlNOSf0LZma1kOfK4FpJH6hbJNajD34wlayYMgV+/vNU5O4vfyk6KjMbKPIkg7uBKyW9KWm+pNckza9XYLasVVZJieD222HYsDQE9bDD4MUXi47MzJpdnmRwGrAzMDwiVo2IVSJi1TrFZT3YZReYORNOOil1Mm+xBVxyiSermVnf5UkGTwGzo1b1K2y5rLhi6lSeMQPGjoVDD4X990+rppmZ5ZUnGTwK3CzpBEnHlLd6BWbVed/70gij006DG2+EcePgzDPhnXeKjszMmkmeZPAYcCOwAh5a2lAGD04T1GbPhh13hC9+MU1a+8c/io7MzJpFnhLW361nILb8NtoIrr8ezj8fjjkmlcT+1rfguONgqFerNrMeVH1lIKlN0k2dt3oGZ/lJcMQRabLahz4E3/hGWjdh+vSiIzOzRpanmeg/SaudHQecBMwEBnZNiCa2zjpw2WVw5ZXw/POwww5w/PGpTLaZWWdVJ4OImF6x3RERxwAT6xea1cKHPwwPPACf+xz86Eew1VapWqqZWaU8zURrVmwjJe0DrFbH2KxGVl8dzj4bbropNSPtuSd84QvwyitFR2ZmjSJPM9F0UrNQO3AncAzwuXoEZfUxaRLcd19qLvrVr9Iw1CuvLDoqM2sEvSYDSRMkrRMRG0bERsB3gb9n2wNVPH8fSf+QNEfS17s4frikDkkzs+3zfflDrDrDhsEPfwj33gtrrw0HHggHHQTPPlt0ZGZWpGquDH4JLASQtAfwfeAC4FXg7J6emK2B8Avgg8A44FBJ47o49XcRsU22nZMjfuuj7bZLCeH730/Lbm6xBZx3nktamLWqapLB4Ih4Kbv/ceDsiLgiIk4CNunluTsAcyLi0YhYCFwCHND3cK2Whg6Fr389NR1ttVXqZJ48GR59tOjIzKy/VZUMJJUnp+0FVM4t6G3S2mhSTaOyudm+zj4q6T5Jl0tav6sXknSkpHZJ7R0dHVWEbdV6z3vSCKOzzkpLcW62WZrFXLn+clsbnHpqcTGaWX1VkwwuBm6R9EfgTeA2AEmbkJqKltefgLHZwjk3kJqglhERZ0fE+IgYP2rUqBq8rVUaNCgtnvPAA2lOwplnwpZbpquGtra02tqECUVHaWb10msyiIhTgGOB84HdKqqWDgK+3MvTnwYqf+mPyfZVvv6LEfFW9vAcYPvew7Z6GT06rZdw0knw0EOppMXee8NRR6XS2WY2MFU1tDQi7o6IKyPi9Yp9D0XEjF6eOg3YVNKGklYADgGuqjxB0roVD/cHHqwudKsXKZXHPiarSTtsGHzve7DeemnJzRkz3NFsNtDkmWeQW0QsAr4E/IX0JX9pRNwv6WRJ+2enfUXS/ZJmAV8BDq9nTFadtja44IJ0hbDCCqm/YO+94f/+D7bfHrbZBn7yE3D3jdnAoGZcq2b8+PHR3u6ySPVS7iO49NI0Ua3y8TbbpFXVfvWr1Nk8ZEgqiHfEEWmd5iFV18E1s/4maXpEjO/qWF2vDKw5TZu2JBFAur300rR/jTVS/8G996b1E44+Gu64I62yNmZMKpf9QK9TEc2s0fjKwJbb22/Dtdemq4Wrr4ZFi9KIpCOOgEMOSbWRzKx4vjKwuho6NF0ZXHklPP10WoLzzTfTFcS668InPgE33LD0vAUzayxOBlZT73pXWoJz1ixob0+zmq+7Dj7wAdhww9Qh/cgjRUdpZp05GVhdSGnU0emnwzPPwO9+l6qknnIKbLIJvP/9aXnOBQuKjtTMwMnA+sFKK6XRSNddB08+mRLCM8+kPoV11oHPfhZuu81zF8yK5GRg/WrMGDjxxDS7+bbb4EYhkbIAAApWSURBVOMfT8tz7rFHqpF0yinw1FO9v46Z1ZaTgRVCgt12g3PPhXnzUpPR6NHwzW/CBhukCW6XXAL//GfRkZq1BicDK9yIEfCZz8DNN8OcOSkh/P3vcOihaTTSF7+Y5jj88IfLrt/saqpmteFkYA1l441TXaTHHkvDUffdN81f2GGHVGL7Qx+CK65I57qaqlntOBlYQxo0CEol+M1vUjPSWWelYauvv56W6dx0U9hvv1RMb9NN3flstrw8A9maygMPpLkLd9+99P4110yrtW299ZJt3Lg0ksnMkp5mILusmDWV555L/QonnQRnnJFuhwxJk9xmzYKzz06znwEGD06rtlUmiK22Sv0QUrF/h1mjcTKwptG5muqkSUseT5mSzlm8OM1wLieHWbPSYj0XX7zkdUaOXDZBjBuXSnWbtSo3E1nTOPXU1FlcrqYKKUFMmwbHH9/zc19+OS3hWU4Q992Xqq6Wh64OGQJbbLF0gth6a1h77fr9PWb9radmIicDa1mLFsHDDy9JDuVE8XTFwqxrr71sgth881Scr9LyJCqz/uI+A7MulK8Gttgildoue/HFpZPDrFnw05/CwoXp+AorpGalyg7r97yn+wWBzJqBrwzMqvD226mERmUz06xZadhr2Vprwfz5KVE89BAcdhjsvHMaEjtq1JJt+PDi/g5rbW4mMquTjo6lk8MNN6QEMXhw9+s3rLzyksRQmSi6u788ycPNV1bJzURmdTJqVJocVyqlL9lrrknDXc88M9Vb2mILeP75lDQ6Opa9P29eSiTPPw9vvdX1e1Qmj2oSSGXymDDBzVdWHScDsxroadhr5a/y7kSktR16ShwdHfDssyl5dHR0nzyGD186SWy/Pfzbv6Umq3vvhWOPhXfegb/+NU3WW3PNVB/Kcy9am5uJzGqgv5tjqk0elVcgPS07OmQIrLHGkuRQeb+nx2uskZ6bl5uviuE+A7MWVr5q+fzn0wztU09Nq8299FKaf/HSS0u2rh6/+mrPr7/qqtUnj/J2332pUm1XzVfVXElZ3zgZmLWozl+yffnSXbQIXnml62TRW0JZtKj71x0yJF2trL56GoW1+eaw3nqpj6SrbcSI7o9Vbiut1Pcmr4F+xeIOZLMWNW3a0l/8kyalx9OmVZ8MhgxJJTxGjsz33uWmrJ6SxQ03pL6LTTdNE/zmz09NWq+/vvSWx6BB1SWNrhLMggXw4Q/Dt78Nu+6aZqkfdxz88pcp7uHD0zyT/u5f6Y8k5SsDMytE+SrlqKPS6KvurlYiUvHBcmJYsGDZZNHT1tv5eb8CpZQUhg1LW/l+PW7LiacWV3gpdl8ZmFkDyTP6qvzlO3x4Gh1VSxGpPlXnxHH66XDRRfDRj8IBB8Abb6SEVM3tiy92fawvv7srE8+gQTB5clrH4447at+/4mRgZv2uFs1XtSAt+YVfbgZra4Nrr10yX2TKlOWPKSINBa42oXR3O20a/PGPKbZaf05uJjIzy9SqOaaesfXWrNaTnpqJvOylmVmmpyuWIlUmpZNPTrcHH5z214qvDMzMGlytRhMVOs9A0j7AT4HBwDkR8YNOx1cELgS2B14EPh4Rj/f0mk4GZmb5FdZMJGkw8Avgg8A44FBJ4zqd9jng5YjYBPhf4If1jMnMzJZV7z6DHYA5EfFoRCwELgEO6HTOAcAF2f3Lgb0kl8wyM+tP9U4Go4GnKh7PzfZ1eU5ELAJeBdbq/EKSjpTULqm9o6OjTuGambWmphlNFBFnR8T4iBg/qtYzT8zMWly9k8HTwPoVj8dk+7o8R9IQYDVSR7KZmfWTes9AngZsKmlD0pf+IcAnOp1zFfAZ4C7gIOCm6GWI0/Tp01+Q9EQfYxoJvNDH59aT48qnUeOCxo3NceUzEOPaoLsDdU0GEbFI0peAv5CGlp4XEfdLOhloj4irgHOBiyTNAV4iJYzeXrfP7USS2rsbWlUkx5VPo8YFjRub48qn1eKqe22iiLgGuKbTvm9V3P8n8LF6x2FmZt1rmg5kMzOrn1ZMBmcXHUA3HFc+jRoXNG5sjiufloqrKWsTmZlZbbXilYGZmXXiZGBmZq2TDCSdJ+l5SbOLjqWSpPUltUl6QNL9ko4uOiYASStJulfSrCyu7xYdUyVJgyX9VdLVRcdSJulxSX+TNFNSw5TVlbS6pMsl/V3Sg5J2boCYNss+p/I2X9JXi44LQNLXsv/mZ0u6WNJKRccEIOnoLKb76/FZtUyfgaQ9gAXAhRHx3qLjKZO0LrBuRMyQtAowHfhwRDxQcFwCVo6IBZKGArcDR0fE3UXGVSbpGGA8sGpE7Fd0PJCSATA+IhpqopKkC4DbIuIcSSsAwyPilaLjKsuqGz8N7BgRfZ1MWqtYRpP+Wx8XEW9KuhS4JiLOLziu95IKfe4ALASuA/4jIubU6j1a5sogIm4lTWprKBExLyJmZPdfAx5k2WJ+/S6SBdnDodnWEL8cJI0B/g04p+hYGp2k1YA9SJM7iYiFjZQIMnsBjxSdCCoMAYZl5XGGA88UHA/AFsA9EfFGVtDzFuDAWr5ByySDZiBpLLAtcE+xkSRZU8xM4HnghohoiLiAnwDHA+8UHUgnAVwvabqkI4sOJrMh0AH8KmtWO0fSykUH1ckhwMVFBwEQEU8DPwaeBOYBr0bE9cVGBcBsYHdJa0kaDuzL0nXflpuTQYOQNAK4AvhqRMwvOh6AiFgcEduQCgzukF2qFkrSfsDzETG96Fi6sFtEbEdazGlK1jRZtCHAdsCZEbEt8Drw9WJDWiJrttofuKzoWAAkrUFaY2VDYD1gZUmfKjYqiIgHSQt/XU9qIpoJLK7lezgZNICsTf4K4DcR8fui4+ksa1ZoA/YpOhZgV2D/rH3+EmBPSb8uNqQk+1VJRDwPXElq3y3aXGBuxVXd5aTk0Cg+CMyIiOeKDiRTAh6LiI6IeBv4PbBLwTEBEBHnRsT2EbEH8DLwUC1f38mgYFlH7bnAgxFxWtHxlEkaJWn17P4wYDLw92Kjgog4ISLGRMRYUvPCTRFR+C83SStnAwDImmE+QLq0L1REPAs8JWmzbNdeQKGDEzo5lAZpIso8CewkaXj2/+ZepH68wkl6V3b7blJ/wW9r+fp1L1TXKCRdDEwERkqaC3w7Is4tNiog/dL9NPC3rH0e4MSswF+R1gUuyEZ6DAIujYiGGcbZgNYGrsxWbB0C/DYiris2pH/5MvCbrEnmUeCIguMB/pU0JwP/XnQsZRFxj6TLgRnAIuCvNE5ZiiskrQW8DUyp9UCAlhlaamZm3XMzkZmZORmYmZmTgZmZ4WRgZmY4GZiZGU4GZjUjaWyjVcU1q5aTgZmZORmY1YOkjbLCcBOKjsWsGi0zA9msv2SlHy4BDo+IWUXHY1YNJwOz2hoF/BE4sOgFiszycDORWW29Sip2tlvRgZjl4SsDs9paCHwE+IukBRFR08qSZvXiZGBWYxHxerYIzw1ZQriq6JjMeuOqpWZm5j4DMzNzMjAzM5wMzMwMJwMzM8PJwMzMcDIwMzOcDMzMDPj/8wx+MU3GAbMAAAAASUVORK5CYII=\n", + "text/plain": [ + "| \n", + " | id | \n", + "diagnosis | \n", + "radius_mean | \n", + "texture_mean | \n", + "perimeter_mean | \n", + "area_mean | \n", + "smoothness_mean | \n", + "compactness_mean | \n", + "concavity_mean | \n", + "concave points_mean | \n", + "symmetry_mean | \n", + "fractal_dimension_mean | \n", + "radius_se | \n", + "texture_se | \n", + "perimeter_se | \n", + "area_se | \n", + "smoothness_se | \n", + "compactness_se | \n", + "concavity_se | \n", + "concave points_se | \n", + "symmetry_se | \n", + "fractal_dimension_se | \n", + "radius_worst | \n", + "texture_worst | \n", + "perimeter_worst | \n", + "area_worst | \n", + "smoothness_worst | \n", + "compactness_worst | \n", + "concavity_worst | \n", + "concave points_worst | \n", + "symmetry_worst | \n", + "fractal_dimension_worst | \n", + "Unnamed: 32 | \n", + "clusters | \n", + "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", + "842302 | \n", + "1 | \n", + "17.99 | \n", + "10.38 | \n", + "122.80 | \n", + "1001.0 | \n", + "0.11840 | \n", + "0.27760 | \n", + "0.3001 | \n", + "0.14710 | \n", + "0.2419 | \n", + "0.07871 | \n", + "1.0950 | \n", + "0.9053 | \n", + "8.589 | \n", + "153.40 | \n", + "0.006399 | \n", + "0.04904 | \n", + "0.05373 | \n", + "0.01587 | \n", + "0.03003 | \n", + "0.006193 | \n", + "25.38 | \n", + "17.33 | \n", + "184.60 | \n", + "2019.0 | \n", + "0.1622 | \n", + "0.6656 | \n", + "0.7119 | \n", + "0.2654 | \n", + "0.4601 | \n", + "0.11890 | \n", + "NaN | \n", + "1 | \n", + "
| 1 | \n", + "842517 | \n", + "1 | \n", + "20.57 | \n", + "17.77 | \n", + "132.90 | \n", + "1326.0 | \n", + "0.08474 | \n", + "0.07864 | \n", + "0.0869 | \n", + "0.07017 | \n", + "0.1812 | \n", + "0.05667 | \n", + "0.5435 | \n", + "0.7339 | \n", + "3.398 | \n", + "74.08 | \n", + "0.005225 | \n", + "0.01308 | \n", + "0.01860 | \n", + "0.01340 | \n", + "0.01389 | \n", + "0.003532 | \n", + "24.99 | \n", + "23.41 | \n", + "158.80 | \n", + "1956.0 | \n", + "0.1238 | \n", + "0.1866 | \n", + "0.2416 | \n", + "0.1860 | \n", + "0.2750 | \n", + "0.08902 | \n", + "NaN | \n", + "1 | \n", + "
| 2 | \n", + "84300903 | \n", + "1 | \n", + "19.69 | \n", + "21.25 | \n", + "130.00 | \n", + "1203.0 | \n", + "0.10960 | \n", + "0.15990 | \n", + "0.1974 | \n", + "0.12790 | \n", + "0.2069 | \n", + "0.05999 | \n", + "0.7456 | \n", + "0.7869 | \n", + "4.585 | \n", + "94.03 | \n", + "0.006150 | \n", + "0.04006 | \n", + "0.03832 | \n", + "0.02058 | \n", + "0.02250 | \n", + "0.004571 | \n", + "23.57 | \n", + "25.53 | \n", + "152.50 | \n", + "1709.0 | \n", + "0.1444 | \n", + "0.4245 | \n", + "0.4504 | \n", + "0.2430 | \n", + "0.3613 | \n", + "0.08758 | \n", + "NaN | \n", + "1 | \n", + "
| 3 | \n", + "84348301 | \n", + "1 | \n", + "11.42 | \n", + "20.38 | \n", + "77.58 | \n", + "386.1 | \n", + "0.14250 | \n", + "0.28390 | \n", + "0.2414 | \n", + "0.10520 | \n", + "0.2597 | \n", + "0.09744 | \n", + "0.4956 | \n", + "1.1560 | \n", + "3.445 | \n", + "27.23 | \n", + "0.009110 | \n", + "0.07458 | \n", + "0.05661 | \n", + "0.01867 | \n", + "0.05963 | \n", + "0.009208 | \n", + "14.91 | \n", + "26.50 | \n", + "98.87 | \n", + "567.7 | \n", + "0.2098 | \n", + "0.8663 | \n", + "0.6869 | \n", + "0.2575 | \n", + "0.6638 | \n", + "0.17300 | \n", + "NaN | \n", + "0 | \n", + "
| 4 | \n", + "84358402 | \n", + "1 | \n", + "20.29 | \n", + "14.34 | \n", + "135.10 | \n", + "1297.0 | \n", + "0.10030 | \n", + "0.13280 | \n", + "0.1980 | \n", + "0.10430 | \n", + "0.1809 | \n", + "0.05883 | \n", + "0.7572 | \n", + "0.7813 | \n", + "5.438 | \n", + "94.44 | \n", + "0.011490 | \n", + "0.02461 | \n", + "0.05688 | \n", + "0.01885 | \n", + "0.01756 | \n", + "0.005115 | \n", + "22.54 | \n", + "16.67 | \n", + "152.20 | \n", + "1575.0 | \n", + "0.1374 | \n", + "0.2050 | \n", + "0.4000 | \n", + "0.1625 | \n", + "0.2364 | \n", + "0.07678 | \n", + "NaN | \n", + "1 | \n", + "
| \n", + " | id | \n", + "diagnosis | \n", + "radius_mean | \n", + "texture_mean | \n", + "perimeter_mean | \n", + "area_mean | \n", + "smoothness_mean | \n", + "compactness_mean | \n", + "concavity_mean | \n", + "concave points_mean | \n", + "symmetry_mean | \n", + "fractal_dimension_mean | \n", + "radius_se | \n", + "texture_se | \n", + "perimeter_se | \n", + "area_se | \n", + "smoothness_se | \n", + "compactness_se | \n", + "concavity_se | \n", + "concave points_se | \n", + "symmetry_se | \n", + "fractal_dimension_se | \n", + "radius_worst | \n", + "texture_worst | \n", + "perimeter_worst | \n", + "area_worst | \n", + "smoothness_worst | \n", + "compactness_worst | \n", + "concavity_worst | \n", + "concave points_worst | \n", + "symmetry_worst | \n", + "fractal_dimension_worst | \n", + "Unnamed: 32 | \n", + "clusters | \n", + "correct | \n", + "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", + "842302 | \n", + "1 | \n", + "17.99 | \n", + "10.38 | \n", + "122.80 | \n", + "1001.0 | \n", + "0.11840 | \n", + "0.27760 | \n", + "0.3001 | \n", + "0.14710 | \n", + "0.2419 | \n", + "0.07871 | \n", + "1.0950 | \n", + "0.9053 | \n", + "8.589 | \n", + "153.40 | \n", + "0.006399 | \n", + "0.04904 | \n", + "0.05373 | \n", + "0.01587 | \n", + "0.03003 | \n", + "0.006193 | \n", + "25.38 | \n", + "17.33 | \n", + "184.60 | \n", + "2019.0 | \n", + "0.1622 | \n", + "0.6656 | \n", + "0.7119 | \n", + "0.2654 | \n", + "0.4601 | \n", + "0.11890 | \n", + "NaN | \n", + "1 | \n", + "1 | \n", + "
| 1 | \n", + "842517 | \n", + "1 | \n", + "20.57 | \n", + "17.77 | \n", + "132.90 | \n", + "1326.0 | \n", + "0.08474 | \n", + "0.07864 | \n", + "0.0869 | \n", + "0.07017 | \n", + "0.1812 | \n", + "0.05667 | \n", + "0.5435 | \n", + "0.7339 | \n", + "3.398 | \n", + "74.08 | \n", + "0.005225 | \n", + "0.01308 | \n", + "0.01860 | \n", + "0.01340 | \n", + "0.01389 | \n", + "0.003532 | \n", + "24.99 | \n", + "23.41 | \n", + "158.80 | \n", + "1956.0 | \n", + "0.1238 | \n", + "0.1866 | \n", + "0.2416 | \n", + "0.1860 | \n", + "0.2750 | \n", + "0.08902 | \n", + "NaN | \n", + "1 | \n", + "1 | \n", + "
| 2 | \n", + "84300903 | \n", + "1 | \n", + "19.69 | \n", + "21.25 | \n", + "130.00 | \n", + "1203.0 | \n", + "0.10960 | \n", + "0.15990 | \n", + "0.1974 | \n", + "0.12790 | \n", + "0.2069 | \n", + "0.05999 | \n", + "0.7456 | \n", + "0.7869 | \n", + "4.585 | \n", + "94.03 | \n", + "0.006150 | \n", + "0.04006 | \n", + "0.03832 | \n", + "0.02058 | \n", + "0.02250 | \n", + "0.004571 | \n", + "23.57 | \n", + "25.53 | \n", + "152.50 | \n", + "1709.0 | \n", + "0.1444 | \n", + "0.4245 | \n", + "0.4504 | \n", + "0.2430 | \n", + "0.3613 | \n", + "0.08758 | \n", + "NaN | \n", + "1 | \n", + "1 | \n", + "
| 3 | \n", + "84348301 | \n", + "1 | \n", + "11.42 | \n", + "20.38 | \n", + "77.58 | \n", + "386.1 | \n", + "0.14250 | \n", + "0.28390 | \n", + "0.2414 | \n", + "0.10520 | \n", + "0.2597 | \n", + "0.09744 | \n", + "0.4956 | \n", + "1.1560 | \n", + "3.445 | \n", + "27.23 | \n", + "0.009110 | \n", + "0.07458 | \n", + "0.05661 | \n", + "0.01867 | \n", + "0.05963 | \n", + "0.009208 | \n", + "14.91 | \n", + "26.50 | \n", + "98.87 | \n", + "567.7 | \n", + "0.2098 | \n", + "0.8663 | \n", + "0.6869 | \n", + "0.2575 | \n", + "0.6638 | \n", + "0.17300 | \n", + "NaN | \n", + "0 | \n", + "0 | \n", + "
| 4 | \n", + "84358402 | \n", + "1 | \n", + "20.29 | \n", + "14.34 | \n", + "135.10 | \n", + "1297.0 | \n", + "0.10030 | \n", + "0.13280 | \n", + "0.1980 | \n", + "0.10430 | \n", + "0.1809 | \n", + "0.05883 | \n", + "0.7572 | \n", + "0.7813 | \n", + "5.438 | \n", + "94.44 | \n", + "0.011490 | \n", + "0.02461 | \n", + "0.05688 | \n", + "0.01885 | \n", + "0.01756 | \n", + "0.005115 | \n", + "22.54 | \n", + "16.67 | \n", + "152.20 | \n", + "1575.0 | \n", + "0.1374 | \n", + "0.2050 | \n", + "0.4000 | \n", + "0.1625 | \n", + "0.2364 | \n", + "0.07678 | \n", + "NaN | \n", + "1 | \n", + "1 | \n", + "