|
| 1 | +using System; |
| 2 | +using System.Collections; |
| 3 | +using System.Collections.Generic; |
| 4 | +using System.Diagnostics; |
| 5 | +using System.Diagnostics.CodeAnalysis; |
| 6 | +using System.Threading.Tasks; |
| 7 | +using BitFaster.Caching.Buffers; |
| 8 | +using BitFaster.Caching.Lru; |
| 9 | +using BitFaster.Caching.Scheduler; |
| 10 | + |
| 11 | +namespace BitFaster.Caching.Lfu |
| 12 | +{ |
| 13 | + /// <summary> |
| 14 | + /// An approximate LFU based on the W-TinyLfu eviction policy. W-TinyLfu tracks items using a window LRU list, and |
| 15 | + /// a main space LRU divided into protected and probation segments. Reads and writes to the cache are stored in buffers |
| 16 | + /// and later applied to the policy LRU lists in batches under a lock. Each read and write is tracked using a compact |
| 17 | + /// popularity sketch to probalistically estimate item frequency. Items proceed through the LRU lists as follows: |
| 18 | + /// <list type="number"> |
| 19 | + /// <item><description>New items are added to the window LRU. When acessed window items move to the window MRU position.</description></item> |
| 20 | + /// <item><description>When the window is full, candidate items are moved to the probation segment in LRU order.</description></item> |
| 21 | + /// <item><description>When the main space is full, the access frequency of each window candidate is compared |
| 22 | + /// to probation victims in LRU order. The item with the lowest frequency is evicted until the cache size is within bounds.</description></item> |
| 23 | + /// <item><description>When a probation item is accessed, it is moved to the protected segment. If the protected segment is full, |
| 24 | + /// the LRU protected item is demoted to probation.</description></item> |
| 25 | + /// <item><description>When a protected item is accessed, it is moved to the protected MRU position.</description></item> |
| 26 | + /// </list> |
| 27 | + /// The size of the admission window and main space are adapted over time to iteratively improve hit rate using a |
| 28 | + /// hill climbing algorithm. A larger window favors workloads with high recency bias, whereas a larger main space |
| 29 | + /// favors workloads with frequency bias. |
| 30 | + /// </summary> |
| 31 | + /// Based on the Caffeine library by ben.manes@gmail.com (Ben Manes). |
| 32 | + /// https://github.com/ben-manes/caffeine |
| 33 | + [DebuggerTypeProxy(typeof(ConcurrentLfu<,>.LfuDebugView<>))] |
| 34 | + [DebuggerDisplay("Count = {Count}/{Capacity}")] |
| 35 | + public sealed class ConcurrentLfu<K, V> : ICache<K, V>, IAsyncCache<K, V>, IBoundedPolicy |
| 36 | + { |
| 37 | + // Note: for performance reasons this is a mutable struct, it cannot be readonly. |
| 38 | + private ConcurrentLfuCore<K, V, AccessOrderNode<K, V>, AccessOrderPolicy<K, V>> core; |
| 39 | + |
| 40 | + /// <summary> |
| 41 | + /// The default buffer size. |
| 42 | + /// </summary> |
| 43 | + public const int DefaultBufferSize = 128; |
| 44 | + |
| 45 | + /// <summary> |
| 46 | + /// Initializes a new instance of the ConcurrentLfu class with the specified capacity. |
| 47 | + /// </summary> |
| 48 | + /// <param name="capacity">The capacity.</param> |
| 49 | + public ConcurrentLfu(int capacity) |
| 50 | + { |
| 51 | + this.core = new(Defaults.ConcurrencyLevel, capacity, new ThreadPoolScheduler(), EqualityComparer<K>.Default, () => this.DrainBuffers()); |
| 52 | + } |
| 53 | + |
| 54 | + /// <summary> |
| 55 | + /// Initializes a new instance of the ConcurrentLfu class with the specified concurrencyLevel, capacity, scheduler, equality comparer and buffer size. |
| 56 | + /// </summary> |
| 57 | + /// <param name="concurrencyLevel">The concurrency level.</param> |
| 58 | + /// <param name="capacity">The capacity.</param> |
| 59 | + /// <param name="scheduler">The scheduler.</param> |
| 60 | + /// <param name="comparer">The equality comparer.</param> |
| 61 | + public ConcurrentLfu(int concurrencyLevel, int capacity, IScheduler scheduler, IEqualityComparer<K> comparer) |
| 62 | + { |
| 63 | + this.core = new(concurrencyLevel, capacity, scheduler, comparer, () => this.DrainBuffers()); |
| 64 | + } |
| 65 | + |
| 66 | + internal ConcurrentLfuCore<K, V, AccessOrderNode<K, V>, AccessOrderPolicy<K, V>> Core => core; |
| 67 | + |
| 68 | + // structs cannot declare self referencing lambda functions, therefore pass this in from the ctor |
| 69 | + private void DrainBuffers() |
| 70 | + { |
| 71 | + this.core.DrainBuffers(); |
| 72 | + } |
| 73 | + |
| 74 | + ///<inheritdoc/> |
| 75 | + public int Count => core.Count; |
| 76 | + |
| 77 | + ///<inheritdoc/> |
| 78 | + public Optional<ICacheMetrics> Metrics => core.Metrics; |
| 79 | + |
| 80 | + ///<inheritdoc/> |
| 81 | + public Optional<ICacheEvents<K, V>> Events => core.Events; |
| 82 | + |
| 83 | + ///<inheritdoc/> |
| 84 | + public CachePolicy Policy => core.Policy; |
| 85 | + |
| 86 | + ///<inheritdoc/> |
| 87 | + public ICollection<K> Keys => core.Keys; |
| 88 | + |
| 89 | + ///<inheritdoc/> |
| 90 | + public int Capacity => core.Capacity; |
| 91 | + |
| 92 | + ///<inheritdoc/> |
| 93 | + public IScheduler Scheduler => core.Scheduler; |
| 94 | + |
| 95 | + /// <summary> |
| 96 | + /// Synchronously perform all pending policy maintenance. Drain the read and write buffers then |
| 97 | + /// use the eviction policy to preserve bounded size and remove expired items. |
| 98 | + /// </summary> |
| 99 | + /// <remarks> |
| 100 | + /// Note: maintenance is automatically performed asynchronously immediately following a read or write. |
| 101 | + /// It is not necessary to call this method, <see cref="DoMaintenance"/> is provided purely to enable tests to reach a consistent state. |
| 102 | + /// </remarks> |
| 103 | + public void DoMaintenance() |
| 104 | + { |
| 105 | + core.DoMaintenance(); |
| 106 | + } |
| 107 | + |
| 108 | + ///<inheritdoc/> |
| 109 | + public void AddOrUpdate(K key, V value) |
| 110 | + { |
| 111 | + core.AddOrUpdate(key, value); |
| 112 | + } |
| 113 | + |
| 114 | + ///<inheritdoc/> |
| 115 | + public void Clear() |
| 116 | + { |
| 117 | + core.Clear(); |
| 118 | + } |
| 119 | + |
| 120 | + ///<inheritdoc/> |
| 121 | + public V GetOrAdd(K key, Func<K, V> valueFactory) |
| 122 | + { |
| 123 | + return core.GetOrAdd(key, valueFactory); |
| 124 | + } |
| 125 | + |
| 126 | + ///<inheritdoc/> |
| 127 | + public V GetOrAdd<TArg>(K key, Func<K, TArg, V> valueFactory, TArg factoryArgument) |
| 128 | + { |
| 129 | + return core.GetOrAdd(key, valueFactory, factoryArgument); |
| 130 | + } |
| 131 | + |
| 132 | + ///<inheritdoc/> |
| 133 | + public ValueTask<V> GetOrAddAsync(K key, Func<K, Task<V>> valueFactory) |
| 134 | + { |
| 135 | + return core.GetOrAddAsync(key, valueFactory); |
| 136 | + } |
| 137 | + |
| 138 | + ///<inheritdoc/> |
| 139 | + public ValueTask<V> GetOrAddAsync<TArg>(K key, Func<K, TArg, Task<V>> valueFactory, TArg factoryArgument) |
| 140 | + { |
| 141 | + return core.GetOrAddAsync(key, valueFactory, factoryArgument); |
| 142 | + } |
| 143 | + |
| 144 | + ///<inheritdoc/> |
| 145 | + public void Trim(int itemCount) |
| 146 | + { |
| 147 | + core.Trim(itemCount); |
| 148 | + } |
| 149 | + |
| 150 | + ///<inheritdoc/> |
| 151 | + public bool TryGet(K key, out V value) |
| 152 | + { |
| 153 | + return core.TryGet(key, out value); |
| 154 | + } |
| 155 | + |
| 156 | + ///<inheritdoc/> |
| 157 | + public bool TryRemove(K key) |
| 158 | + { |
| 159 | + return core.TryRemove(key); |
| 160 | + } |
| 161 | + |
| 162 | + /// <summary> |
| 163 | + /// Attempts to remove the specified key value pair. |
| 164 | + /// </summary> |
| 165 | + /// <param name="item">The item to remove.</param> |
| 166 | + /// <returns>true if the item was removed successfully; otherwise, false.</returns> |
| 167 | + public bool TryRemove(KeyValuePair<K, V> item) |
| 168 | + { |
| 169 | + return core.TryRemove(item); |
| 170 | + } |
| 171 | + |
| 172 | + /// <summary> |
| 173 | + /// Attempts to remove and return the value that has the specified key. |
| 174 | + /// </summary> |
| 175 | + /// <param name="key">The key of the element to remove.</param> |
| 176 | + /// <param name="value">When this method returns, contains the object removed, or the default value of the value type if key does not exist.</param> |
| 177 | + /// <returns>true if the object was removed successfully; otherwise, false.</returns> |
| 178 | + public bool TryRemove(K key, out V value) |
| 179 | + { |
| 180 | + return core.TryRemove(key, out value); |
| 181 | + } |
| 182 | + |
| 183 | + ///<inheritdoc/> |
| 184 | + public bool TryUpdate(K key, V value) |
| 185 | + { |
| 186 | + return core.TryUpdate(key, value); |
| 187 | + } |
| 188 | + |
| 189 | + ///<inheritdoc/> |
| 190 | + public IEnumerator<KeyValuePair<K, V>> GetEnumerator() |
| 191 | + { |
| 192 | + return core.GetEnumerator(); |
| 193 | + } |
| 194 | + |
| 195 | + ///<inheritdoc/> |
| 196 | + IEnumerator IEnumerable.GetEnumerator() |
| 197 | + { |
| 198 | + return core.GetEnumerator(); |
| 199 | + } |
| 200 | + |
| 201 | +#if DEBUG |
| 202 | + /// <summary> |
| 203 | + /// Format the LFU as a string by converting all the keys to strings. |
| 204 | + /// </summary> |
| 205 | + /// <returns>The LFU formatted as a string.</returns> |
| 206 | + public string FormatLfuString() |
| 207 | + { |
| 208 | + return core.FormatLfuString(); |
| 209 | + } |
| 210 | +#endif |
| 211 | + |
| 212 | + [ExcludeFromCodeCoverage] |
| 213 | + internal class LfuDebugView<N> |
| 214 | + where N : LfuNode<K, V> |
| 215 | + { |
| 216 | + private readonly ConcurrentLfu<K, V> lfu; |
| 217 | + |
| 218 | + public LfuDebugView(ConcurrentLfu<K, V> lfu) |
| 219 | + { |
| 220 | + this.lfu = lfu; |
| 221 | + } |
| 222 | + |
| 223 | + public string Maintenance => lfu.core.drainStatus.Format(); |
| 224 | + |
| 225 | + public ICacheMetrics Metrics => lfu.Metrics.Value; |
| 226 | + |
| 227 | + public StripedMpscBuffer<N> ReadBuffer => this.lfu.core.readBuffer as StripedMpscBuffer<N>; |
| 228 | + |
| 229 | + public MpscBoundedBuffer<N> WriteBuffer => this.lfu.core.writeBuffer as MpscBoundedBuffer<N>; |
| 230 | + |
| 231 | + public KeyValuePair<K, V>[] Items |
| 232 | + { |
| 233 | + get |
| 234 | + { |
| 235 | + var items = new KeyValuePair<K, V>[lfu.Count]; |
| 236 | + |
| 237 | + int index = 0; |
| 238 | + foreach (var kvp in lfu) |
| 239 | + { |
| 240 | + items[index++] = kvp; |
| 241 | + } |
| 242 | + return items; |
| 243 | + } |
| 244 | + } |
| 245 | + } |
| 246 | + } |
| 247 | + |
| 248 | +} |
0 commit comments