@@ -270,19 +270,30 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar
270270 * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
271271 * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
272272 *
273- * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
274- * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
275- * and k2 have a small size.
276- * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
273+ * Both lambda and beta are primitive cube roots of unity. That is lamba^3 == 1 mod n and
274+ * beta^3 == 1 mod p, where n is the curve order and p is the field order.
275+ *
276+ * Futhermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are
277+ * roots of X^2 + X + 1. Therefore lambda^2 + lamba == -1 mod n and beta^2 + beta == -1 mod p.
278+ * (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.)
279+ *
280+ * Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring
281+ * homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi
282+ * is a lattice over Z[l]. A reduced basis of this lattice is generated by the values a1 + b1*l
283+ * and a2 + b2*l where:
277284 *
278285 * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
279286 * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
280287 * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
281288 * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
282289 *
283- * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
284- * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
285- * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
290+ * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
291+ * (algorithm 3.74) to find r1 and r2 given a, such that r1 + r2 * lambda == a mod n, and r1
292+ * and r2 have a small size.
293+ *
294+ * The algorithm computes c1 = round(b2 * a / n) and c2 = round((-b1) * a / n), and gives
295+ * r1 = a - (c1*a1 + c2*a2) and r2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
296+ * compute r1 as a - r2 * lambda (mod n), avoiding the need for constants a1 and a2.
286297 *
287298 * g1, g2 are precomputed constants used to replace division with a rounded multiplication
288299 * when decomposing the scalar for an endomorphism-based point multiplication.
@@ -297,10 +308,127 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar
297308 * g1 = round((2^384)*b2/d)
298309 * g2 = round((2^384)*(-b1)/d)
299310 *
300- * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
301- * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
311+ * (Note that 'd' is also equal to the curve order, n, here because [a1,b1] and [a2,b2]
312+ * can be found as outputs of the Extended Euclidean Algorithm on inputs 'n' and 'lambda').
313+ *
314+ * The function below splits a in r1 and r2, such that
315+ * - r1 + lambda * r2 == a (mod n)
316+ * - either 0 <= r1 <= (a1 + a2 + 1) / 2 or n - (a1 + a2 + 1)/2 <= r1 < n.
317+ * - either 0 <= r2 <= (-b1 + b2) / 2 or n - (-b1 + b2)/2 <= r2 < n.
318+ *
319+ * Proof.
320+ *
321+ * Let
322+ * - epsilon1 = |g1/2^384 - b2/d|
323+ * - epsilon2 = |g2/2^384 - (-b1)/d|
324+ * - c1 = round(a*g1/2^384)
325+ * - c2 = round(a*g2/2^384)
326+ *
327+ * Lemma 1: |c1 - a*b2/d| < 2^-1 + 2^-129
328+ *
329+ * |c1 - a*b2/d|
330+ * =
331+ * |c1 - a*g1/2^384 + a*g1/2^384 - a*b2/d|
332+ * <= {triangle inequality}
333+ * |c1 - a*g1/2^384| + |a*g1/2^384 - a*b2/d|
334+ * =
335+ * |c1 - a*g1/2^384| + a*|g1/2^384 - b2/d|
336+ * <= {property of rounding in c1 & definition of epsilon1
337+ * 2^-1 + a*epsilon1
338+ * < {a < 2^256 and epsilon1 < 2^-385}
339+ * 2^-1 + 2^256 * 2^-385
340+ * =
341+ * 2^-1 + 2^-129
342+ *
343+ * Lemma 2: |c2 - a*(-b1)/d| < 2^-1 + 2^-129
344+ *
345+ * |c2 - a*(-b1)/d|
346+ * =
347+ * |c2 - a*g2/2^384 + a*g2/2^384 - a*(-b1)/d|
348+ * <= {triangle inequality}
349+ * |c1 - a*g2/2^384| + |a*g2/2^384 - a*(-b1)/d|
350+ * =
351+ * |c1 - a*g2/2^384| + a*|g2/2^384 - (-b1)/d|
352+ * <= {property of rounding in c1 & definition of epsilon2
353+ * 2^-1 + a*epsilon2
354+ * < {a < 2^256 and epsilon2 < 2^-385}
355+ * 2^-1 + 2^256 * 2^-385
356+ * =
357+ * 2^-1 + 2^-129
358+ *
359+ * Let
360+ * - k1 = a - c1*a1 - c2*a2
361+ * - k2 = - c1*b1 - c2*b2
362+ *
363+ * Lemma 3: |k1| < (a1 + a2)(2^-1 + 2^-129) < (a1 + a2 + 3)/2
364+ *
365+ * |k1|
366+ * = {definition of k1}
367+ * |a - c1*a1 - c2*a2|
368+ * = {(a1*b2 - b1*a2)/n = 1}
369+ * |a*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2|
370+ * =
371+ * |a1*(a*b2/n - c1) + a2*(a*(-b1)/n - c2)|
372+ * <= {triangle inequality}
373+ * a1*|a*b2/n - c1| + a2*|a*(-b1)/n - c2|
374+ * < {Lemma 1 and Lemma 2}
375+ * a1*(2^-1 + 2^-129) + a2*(2^-1 + 2^-129)
376+ * =
377+ * (a1 + a2)(2^-1 + 2^-129)
378+ * < {calculation}
379+ * (a1 + a2 + 3)/2
380+ *
381+ * Corollary 4: |k1| <= (a1 + a2 + 1)/2.
382+ * This follows from Lemma 3 and the fact that k1 and (a1 + a2 + 3)/2 are integers.
383+ *
384+ * Lemma 5: |k2| < (-b1 + b2)(2^-1 + 2^-129) < (-b1 + b2 + 2)/2
385+ *
386+ * |k2|
387+ * = {definition of k2}
388+ * |- c1*a1 - c2*a2|
389+ * = {a*(b1*b2 - b1*b2)/n = 0}
390+ * |a*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2|
391+ * =
392+ * |b1*(a*b2/n - c1) + b2*(a*(-b1)/n - c2)|
393+ * <= {triangle inequality}
394+ * (-b1)*|a*b2/n - c1| + b2*|a*(-b1)/n - c2|
395+ * < {Lemma 1 and Lemma 2}
396+ * (-b1)*(2^-1 + 2^-129) + b2*(2^-1 + 2^-129)
397+ * =
398+ * (-b1 + b2)(2^-1 + 2^-129)
399+ * < {calculation}
400+ * (-b1 + b2 + 2)/2
401+ *
402+ * Corollary 4: |k2| <= (-b1 + b2)/2.
403+ * This follows from Lemma 5 and the fact that k2 and (-b1 + b2 + 2)/2 are integers.
404+ *
405+ * Let
406+ * - r2 = k2 mod n
407+ * - r1 = a - r2*lambda mod n.
408+ *
409+ * Notice that r1 is defined such that r1 + r2 * lambda == a (mod n).
410+ *
411+ * Lemma 6: r1 == k1 mod n.
412+ *
413+ * r1
414+ * == {definition of r1 and r2}
415+ * a - k2*lambda
416+ * == {definition of k2}
417+ * a - (- c1*b1 - c2*b2)*lambda
418+ * ==
419+ * a + c1*b1*lambda + c2*b2*lambda
420+ * == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n}
421+ * a - c1*a1 - c2*a2
422+ * == {definition of k1}
423+ * k1
424+ *
425+ * From Corollary 4, Corollary 5 and Lemma 6 we can conclude that
426+ *
427+ * - either r1 <= (a1 + a2 + 1) / 2 or n - (a1 + a2 + 1)/2 <= r1
428+ * - either r2 <= (-b1 + b2) / 2 or n - (-b1 + b2)/2 <= r2.
429+ *
430+ * Q.E.D.
302431 *
303- * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
304432 */
305433
306434static void secp256k1_scalar_split_lambda (secp256k1_scalar * r1 , secp256k1_scalar * r2 , const secp256k1_scalar * a ) {
0 commit comments