@@ -13,12 +13,14 @@ class NanToNum(Transform):
1313
1414 Parameters
1515 ----------
16- default_value : float
17- Value to substitute wherever data is NaN.
18- return_mask : bool, default=False
19- If True, a mask array will be returned under a new key.
20- mask_prefix : str, default='mask_'
21- Prefix for the mask key in the output dictionary.
16+ key : str
17+ The variable key to look for in the simulation data dict.
18+ default_value : float, optional
19+ Value to substitute wherever data is NaN. Default is 0.0.
20+ return_mask : bool, optional
21+ If True, a mask array will be returned under a new key. Default is False.
22+ mask_prefix : str, optional
23+ Prefix for the mask key in the output dictionary. Default is 'mask_'.
2224 """
2325
2426 def __init__ (self , key : str , default_value : float = 0.0 , return_mask : bool = False , mask_prefix : str = "mask" ):
@@ -81,10 +83,10 @@ def inverse(self, data: dict[str, any], **kwargs) -> dict[str, any]:
8183 values = data [self .key ]
8284
8385 if not self .return_mask :
84- values [values == self .default_value ] = np .nan # we assume default_value is not in data
86+ # assumes default_value is not in nan
87+ values [values == self .default_value ] = np .nan
8588 else :
8689 mask_array = data [self .mask_key ].astype (bool )
87- # Put NaNs where mask is 0
8890 values [~ mask_array ] = np .nan
8991
9092 data [self .key ] = values
0 commit comments