|
2 | 2 | from .graphical_simulator import GraphicalSimulator |
3 | 3 |
|
4 | 4 |
|
| 5 | +def irt_simulator(): |
| 6 | + # schools have different exam difficulties |
| 7 | + def sample_school(): |
| 8 | + mu_exam_mean = np.random.normal(loc=1.1, scale=0.2) |
| 9 | + sigma_exam_mean = abs(np.random.normal(loc=0, scale=1)) |
| 10 | + |
| 11 | + # hierarchical mu/sigma for the exam difficulty standard deviation (logscale) |
| 12 | + mu_exam_std = np.random.normal(loc=0.5, scale=0.3) |
| 13 | + sigma_exam_std = abs(np.random.normal(loc=0, scale=1)) |
| 14 | + |
| 15 | + return dict( |
| 16 | + mu_exam_mean=mu_exam_mean, |
| 17 | + sigma_exam_mean=sigma_exam_mean, |
| 18 | + mu_exam_std=mu_exam_std, |
| 19 | + sigma_exam_std=sigma_exam_std, |
| 20 | + ) |
| 21 | + |
| 22 | + # exams have different question difficulties |
| 23 | + def sample_exam(mu_exam_mean, sigma_exam_mean, mu_exam_std, sigma_exam_std): |
| 24 | + # mean question difficulty for an exam |
| 25 | + exam_mean = np.random.normal(loc=mu_exam_mean, scale=sigma_exam_mean) |
| 26 | + |
| 27 | + # standard deviation of question difficulty |
| 28 | + log_exam_std = np.random.normal(loc=mu_exam_std, scale=sigma_exam_std) |
| 29 | + exam_std = float(np.exp(log_exam_std)) |
| 30 | + |
| 31 | + return dict(exam_mean=exam_mean, exam_std=exam_std) |
| 32 | + |
| 33 | + # realizations of individual question difficulties |
| 34 | + def sample_question(exam_mean, exam_std): |
| 35 | + question_difficulty = np.random.normal(loc=exam_mean, scale=exam_std) |
| 36 | + |
| 37 | + return dict(question_difficulty=question_difficulty) |
| 38 | + |
| 39 | + # realizations of individual student abilities |
| 40 | + def sample_student(**kwargs): |
| 41 | + student_ability = np.random.normal(loc=0, scale=1) |
| 42 | + |
| 43 | + return dict(student_ability=student_ability) |
| 44 | + |
| 45 | + # realizations of individual observations |
| 46 | + def sample_observation(question_difficulty, student_ability): |
| 47 | + theta = np.exp(question_difficulty + student_ability) / (1 + np.exp(question_difficulty + student_ability)) |
| 48 | + |
| 49 | + obs = np.random.binomial(n=1, p=theta) |
| 50 | + |
| 51 | + return dict(obs=obs) |
| 52 | + |
| 53 | + def meta_fn(): |
| 54 | + return { |
| 55 | + "num_exams": np.random.randint(2, 4), |
| 56 | + "num_questions": np.random.randint(10, 21), |
| 57 | + "num_students": np.random.randint(100, 201), |
| 58 | + } |
| 59 | + |
| 60 | + simulator = GraphicalSimulator(meta_fn=meta_fn) |
| 61 | + simulator.add_node( |
| 62 | + "schools", |
| 63 | + sampling_fn=sample_school, |
| 64 | + ) |
| 65 | + simulator.add_node( |
| 66 | + "exams", |
| 67 | + sampling_fn=sample_exam, |
| 68 | + reps="num_exams", |
| 69 | + ) |
| 70 | + simulator.add_node( |
| 71 | + "questions", |
| 72 | + sampling_fn=sample_question, |
| 73 | + reps="num_questions", |
| 74 | + ) |
| 75 | + simulator.add_node( |
| 76 | + "students", |
| 77 | + sampling_fn=sample_student, |
| 78 | + reps="num_students", |
| 79 | + ) |
| 80 | + |
| 81 | + simulator.add_node("observations", sampling_fn=sample_observation) |
| 82 | + |
| 83 | + simulator.add_edge("schools", "exams") |
| 84 | + simulator.add_edge("schools", "students") |
| 85 | + simulator.add_edge("exams", "questions") |
| 86 | + simulator.add_edge("questions", "observations") |
| 87 | + simulator.add_edge("students", "observations") |
| 88 | + |
| 89 | + return simulator |
| 90 | + |
| 91 | + |
5 | 92 | def twolevel_simulator(): |
6 | 93 | def sample_hypers(): |
7 | 94 | hyper_mean = np.random.normal() |
@@ -40,3 +127,52 @@ def sample_y(local_mean, shared_std): |
40 | 127 | simulator.add_edge("shared", "y") |
41 | 128 |
|
42 | 129 | return simulator |
| 130 | + |
| 131 | + |
| 132 | +def threelevel_simulator(): |
| 133 | + def sample_level_1(): |
| 134 | + level_1_mean = np.random.normal() |
| 135 | + |
| 136 | + return {"level_1_mean": float(level_1_mean)} |
| 137 | + |
| 138 | + def sample_level_2(level_1_mean): |
| 139 | + level_2_mean = np.random.normal(level_1_mean, 1) |
| 140 | + |
| 141 | + return {"level_2_mean": float(level_2_mean)} |
| 142 | + |
| 143 | + def sample_level_3(level_2_mean): |
| 144 | + level_3_mean = np.random.normal(level_2_mean, 1) |
| 145 | + |
| 146 | + return {"level_3_mean": float(level_3_mean)} |
| 147 | + |
| 148 | + def sample_shared(): |
| 149 | + shared_std = np.abs(np.random.normal()) |
| 150 | + |
| 151 | + return {"shared_std": shared_std} |
| 152 | + |
| 153 | + def sample_y(level_3_mean, shared_std): |
| 154 | + y = np.random.normal(level_3_mean, shared_std, size=10) |
| 155 | + |
| 156 | + return {"y": y} |
| 157 | + |
| 158 | + simulator = GraphicalSimulator() |
| 159 | + simulator.add_node("level1", sampling_fn=sample_level_1) |
| 160 | + simulator.add_node( |
| 161 | + "level2", |
| 162 | + sampling_fn=sample_level_2, |
| 163 | + reps=10, |
| 164 | + ) |
| 165 | + simulator.add_node( |
| 166 | + "level3", |
| 167 | + sampling_fn=sample_level_3, |
| 168 | + reps=20, |
| 169 | + ) |
| 170 | + simulator.add_node("shared", sampling_fn=sample_shared) |
| 171 | + simulator.add_node("y", sampling_fn=sample_y, reps=10) |
| 172 | + |
| 173 | + simulator.add_edge("level1", "level2") |
| 174 | + simulator.add_edge("level2", "level3") |
| 175 | + simulator.add_edge("level3", "y") |
| 176 | + simulator.add_edge("shared", "y") |
| 177 | + |
| 178 | + return simulator |
0 commit comments