@@ -32,8 +32,7 @@ Check base parameters with `print_cfg` method:
3232``` python
3333mc.print_cfg()
3434```
35- ???+ done "output"
36- <pre >MC constructor
35+ MC constructor
3736 in_chans: 3, num_classes: 1000
3837 expansion: 1, groups: 1, dw: False, div_groups: None
3938 sa: False, se: False
@@ -88,8 +87,7 @@ Now we have model constructor, default setting as xresnet18. And we can get mode
8887model = mc()
8988model
9089```
91- ??? done "output"
92- <pre >Sequential(
90+ Sequential(
9391 MC
9492 (stem): Sequential(
9593 (conv_0): ConvBnAct(
@@ -277,8 +275,7 @@ Now we can look at model parts - stem, body, head.
277275
278276mc.body
279277```
280- ??? done "output"
281- <pre >Sequential(
278+ Sequential(
282279 (l_0): Sequential(
283280 (bl_0): ResBlock(
284281 (convs): Sequential(
@@ -673,8 +670,7 @@ Now we can create constructor from config:
673670mc = ModelConstructor.from_cfg(cfg)
674671mc.print_cfg()
675672```
676- ???+ done "output"
677- <pre >MC constructor
673+ MC constructor
678674 in_chans: 3, num_classes: 1000
679675 expansion: 1, groups: 1, dw: False, div_groups: None
680676 sa: False, se: False
@@ -724,8 +720,7 @@ mc.act_fn = Mish()
724720``` python
725721mc
726722```
727- ???+ done "output"
728- <pre >ModelConstructor(name='MxResNet', in_chans=3, num_classes=1000, block=<class 'model_constructor.model_constructor.ResBlock'>, conv_layer=<class 'model_constructor.layers.ConvBnAct'>, block_sizes=[ 64, 128, 256, 512] , layers=[ 2, 2, 2, 2] , norm=<class 'torch.nn.modules.batchnorm.BatchNorm2d'>, act_fn=Mish(), pool=AvgPool2d(kernel_size=2, stride=2, padding=0), expansion=1, groups=1, dw=False, div_groups=None, sa=False, se=False, bn_1st=True, zero_bn=True, stem_stride_on=0, stem_sizes=[ 3, 32, 64, 64] , stem_pool=MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False), stem_bn_end=False)
723+ ModelConstructor(name='MxResNet', in_chans=3, num_classes=1000, block=<class 'model_constructor.model_constructor.ResBlock'>, conv_layer=<class 'model_constructor.layers.ConvBnAct'>, block_sizes=[64, 128, 256, 512], layers=[2, 2, 2, 2], norm=<class 'torch.nn.modules.batchnorm.BatchNorm2d'>, act_fn=Mish(), pool=AvgPool2d(kernel_size=2, stride=2, padding=0), expansion=1, groups=1, dw=False, div_groups=None, sa=False, se=False, bn_1st=True, zero_bn=True, stem_stride_on=0, stem_sizes=[3, 32, 64, 64], stem_pool=MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False), stem_bn_end=False)
729724
730725
731726
@@ -736,8 +731,7 @@ Here is model:
736731
737732mc()
738733```
739- ??? done "output"
740- <pre >Sequential(
734+ Sequential(
741735 MxResNet
742736 (stem): Sequential(
743737 (conv_0): ConvBnAct(
@@ -963,8 +957,7 @@ print(mc)
963957
964958mc.stem.conv_1
965959```
966- ??? done "output"
967- <pre >ConvBnAct(
960+ ConvBnAct(
968961 (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
969962 (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
970963 (act_fn): Mish()
@@ -977,8 +970,7 @@ mc.stem.conv_1
977970
978971mc.body.l_0.bl_0
979972```
980- ??? done "output"
981- <pre >ResBlock(
973+ ResBlock(
982974 (convs): Sequential(
983975 (conv_0): ConvBnAct(
984976 (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
@@ -1046,8 +1038,7 @@ That all. Now we have YaResNet constructor
10461038mc.name = ' YaResNet'
10471039mc.print_cfg()
10481040```
1049- ??? done "output"
1050- <pre >YaResNet constructor
1041+ YaResNet constructor
10511042 in_chans: 3, num_classes: 1000
10521043 expansion: 4, groups: 1, dw: False, div_groups: None
10531044 sa: False, se: False
@@ -1063,8 +1054,7 @@ Let see what we have.
10631054
10641055mc.body.l_1.bl_0
10651056```
1066- ??? done "output"
1067- <pre >YaResBlock(
1057+ YaResBlock(
10681058 (reduce): AvgPool2d(kernel_size=2, stride=2, padding=0)
10691059 (convs): Sequential(
10701060 (conv_0): ConvBnAct(
0 commit comments