@@ -45,7 +45,7 @@ def mxnet_training_job(sagemaker_session, mxnet_full_version):
4545def test_attach_deploy (mxnet_training_job , sagemaker_session ):
4646 endpoint_name = 'test-mxnet-attach-deploy-{}' .format (sagemaker_timestamp ())
4747
48- with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 20 ):
48+ with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session ):
4949 estimator = MXNet .attach (mxnet_training_job , sagemaker_session = sagemaker_session )
5050 predictor = estimator .deploy (1 , 'ml.m4.xlarge' , endpoint_name = endpoint_name )
5151 data = numpy .zeros (shape = (1 , 1 , 28 , 28 ))
@@ -55,7 +55,7 @@ def test_attach_deploy(mxnet_training_job, sagemaker_session):
5555def test_deploy_model (mxnet_training_job , sagemaker_session ):
5656 endpoint_name = 'test-mxnet-deploy-model-{}' .format (sagemaker_timestamp ())
5757
58- with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 20 ):
58+ with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session ):
5959 desc = sagemaker_session .sagemaker_client .describe_training_job (TrainingJobName = mxnet_training_job )
6060 model_data = desc ['ModelArtifacts' ]['S3ModelArtifacts' ]
6161 script_path = os .path .join (DATA_DIR , 'mxnet_mnist' , 'mnist.py' )
@@ -88,7 +88,7 @@ def test_async_fit(sagemaker_session):
8888 print ("Waiting to re-attach to the training job: %s" % training_job_name )
8989 time .sleep (20 )
9090
91- with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 35 ):
91+ with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session ):
9292 print ("Re-attaching now to: %s" % training_job_name )
9393 estimator = MXNet .attach (training_job_name = training_job_name , sagemaker_session = sagemaker_session )
9494 predictor = estimator .deploy (1 , 'ml.m4.xlarge' , endpoint_name = endpoint_name )
0 commit comments