@@ -282,8 +282,8 @@ def from_job_desc(cls, hyperband_strategy_config):
282282
283283 Returns:
284284 sagemaker.tuner.HyperbandStrategyConfig: De-serialized instance of
285- HyperbandStrategyConfig containing the max_resource and min_resource provided as part of
286- ``hyperband_strategy_config``.
285+ ``HyperbandStrategyConfig`` containing the max_resource
286+ and min_resource provided as part of ``hyperband_strategy_config``.
287287 """
288288 return cls (
289289 min_resource = hyperband_strategy_config [HYPERBAND_MIN_RESOURCE ],
@@ -306,7 +306,7 @@ def to_input_req(self):
306306
307307 Returns:
308308 dict: Containing the "MaxResource" and
309- "MinResource" as the first class fields.
309+ "MinResource" as the first class fields.
310310 """
311311 return {
312312 HYPERBAND_MIN_RESOURCE : self .min_resource ,
@@ -330,7 +330,7 @@ def __init__(
330330
331331 Args:
332332 hyperband_strategy_config (sagemaker.tuner.HyperbandStrategyConfig): The configuration
333- for the object that specifies the Hyperband strategy.
333+ for the object that specifies the Hyperband strategy.
334334 This parameter is only supported for the Hyperband selection for Strategy within
335335 the HyperParameterTuningJobConfig.
336336 """
@@ -461,7 +461,7 @@ def __init__(
461461 ``WarmStartConfig`` object that has been initialized with the
462462 configuration defining the nature of warm start tuning job.
463463 strategy_config (sagemaker.tuner.StrategyConfig): A configuration for "Hyperparameter"
464- tuning job optimisation strategy.
464+ tuning job optimisation strategy.
465465 early_stopping_type (str or PipelineVariable): Specifies whether early stopping is
466466 enabled for the job. Can be either 'Auto' or 'Off' (default:
467467 'Off'). If set to 'Off', early stopping will not be attempted.
@@ -1569,7 +1569,7 @@ def create(
15691569 strategy (str): Strategy to be used for hyperparameter estimations
15701570 (default: 'Bayesian').
15711571 strategy_config (dict): The configuration for a training job launched by a
1572- hyperparameter tuning job.
1572+ hyperparameter tuning job.
15731573 objective_type (str): The type of the objective metric for evaluating training jobs.
15741574 This value can be either 'Minimize' or 'Maximize' (default: 'Maximize').
15751575 max_jobs (int): Maximum total number of training jobs to start for the hyperparameter
@@ -1776,7 +1776,7 @@ def _get_tuner_args(cls, tuner, inputs):
17761776 }
17771777
17781778 if tuner .strategy_config is not None :
1779- tuning_config ["strategy_config" ] = tuner .strategy_config
1779+ tuning_config ["strategy_config" ] = tuner .strategy_config . to_input_req ()
17801780
17811781 if tuner .objective_metric_name is not None :
17821782 tuning_config ["objective_type" ] = tuner .objective_type
0 commit comments