@@ -34,13 +34,15 @@ Table of Contents
34346. `PyTorch SageMaker Estimators <#pytorch-sagemaker-estimators >`__
35357. `SageMaker SparkML Serving <#sagemaker-sparkml-serving >`__
36368. `AWS SageMaker Estimators <#aws-sagemaker-estimators >`__
37- 9. `BYO Docker Containers with SageMaker Estimators <#byo-docker-containers-with-sagemaker-estimators >`__
38- 10. `SageMaker Automatic Model Tuning <#sagemaker-automatic-model-tuning >`__
39- 11. `SageMaker Batch Transform <#sagemaker-batch-transform >`__
40- 12. `Secure Training and Inference with VPC <#secure-training-and-inference-with-vpc >`__
41- 13. `BYO Model <#byo-model >`__
42- 14. `Inference Pipelines <#inference-pipelines >`__
43- 15. `SageMaker Workflow <#sagemaker-workflow >`__
37+ 9. `Using SageMaker AlgorithmEstimators <#using-sagemaker-algorithmestimators >`__
38+ 10. `Consuming SageMaker Model Packages <#consuming-sagemaker-model-packages >`__
39+ 11. `BYO Docker Containers with SageMaker Estimators <#byo-docker-containers-with-sagemaker-estimators >`__
40+ 12. `SageMaker Automatic Model Tuning <#sagemaker-automatic-model-tuning >`__
41+ 13. `SageMaker Batch Transform <#sagemaker-batch-transform >`__
42+ 14. `Secure Training and Inference with VPC <#secure-training-and-inference-with-vpc >`__
43+ 15. `BYO Model <#byo-model >`__
44+ 16. `Inference Pipelines <#inference-pipelines >`__
45+ 17. `SageMaker Workflow <#sagemaker-workflow >`__
4446
4547
4648Installing the SageMaker Python SDK
@@ -456,6 +458,59 @@ For more information, see `AWS SageMaker Estimators and Models`_.
456458
457459.. _AWS SageMaker Estimators and Models: src/ sagemaker/ amazon/ README .rst
458460
461+ Using SageMaker AlgorithmEstimators
462+ ---------------------------------- -
463+
464+ With the SageMaker Algorithm entities, you can create training jobs with just an `` algorithm_arn`` instead of
465+ a training image. There is a dedicated `` AlgorithmEstimator`` class that accepts `` algorithm_arn`` as a
466+ parameter, the rest of the arguments are similar to the other Estimator classes. This class also allows you to
467+ consume algorithms that you have subscribed to in the AWS Marketplace. The AlgorithmEstimator performs
468+ client- side validation on your inputs based on the algorithm' s properties.
469+
470+ Here is an example:
471+
472+ .. code:: python
473+
474+ import sagemaker
475+
476+ algo = sagemaker.AlgorithmEstimator(
477+ algorithm_arn = ' arn:aws:sagemaker:us-west-2:1234567:algorithm/some-algorithm' ,
478+ role = ' SageMakerRole' ,
479+ train_instance_count = 1 ,
480+ train_instance_type = ' ml.c4.xlarge' )
481+
482+ train_input = algo.sagemaker_session.upload_data(path = ' /path/to/your/data' )
483+
484+ algo.fit({' training' : train_input})
485+ algo.deploy(1 , ' ml.m4.xlarge' )
486+
487+ # When you are done using your endpoint
488+ algo.delete_endpoint()
489+
490+
491+ Consuming SageMaker Model Packages
492+ ----------------------------------
493+
494+ SageMaker Model Packages are a way to specify and share information for how to create SageMaker Models.
495+ With a SageMaker Model Package that you have created or subscribed to in the AWS Marketplace,
496+ you can use the specified serving image and model data for Endpoints and Batch Transform jobs.
497+
498+ To work with a SageMaker Model Package, use the `` ModelPackage`` class .
499+
500+ Here is an example:
501+
502+ .. code:: python
503+
504+ import sagemaker
505+
506+ model = sagemaker.ModelPackage(
507+ role = ' SageMakerRole' ,
508+ model_package_arn = ' arn:aws:sagemaker:us-west-2:123456:model-package/my-model-package' )
509+ model.deploy(1 , ' ml.m4.xlarge' , endpoint_name = ' my-endpoint' )
510+
511+ # When you are done using your endpoint
512+ model.sagemaker_session.delete_endpoint(' my-endpoint' )
513+
459514
460515BYO Docker Containers with SageMaker Estimators
461516---------------------------------------------- -
@@ -470,7 +525,7 @@ Please refer to the full example in the examples repo:
470525 git clone https:// github.com/ awslabs/ amazon- sagemaker- examples.git
471526
472527
473- The example notebook is is located here:
528+ The example notebook is located here:
474529`` advanced_functionality/ scikit_bring_your_own/ scikit_bring_your_own.ipynb``
475530
476531
0 commit comments