|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Inferentia2 (inf2.48xlarge)에서 yanolja/KoSOLAR-10.7B-v0.2 배치 추론 \n", |
| 8 | + "\n", |
| 9 | + "---\n", |
| 10 | + "\n", |
| 11 | + "\n" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "# 1. 사전 필수 단계\n", |
| 19 | + "- 아래를 클릭하셔서 사전 단계를 수행 하세요.\n", |
| 20 | + " - [AWS Inferentia2 설치 및 실행 가이드](Readme.md)" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "markdown", |
| 25 | + "metadata": {}, |
| 26 | + "source": [ |
| 27 | + "# 2. 배치 추론 실행" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": 2, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "from vllm import LLM , SamplingParams" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "metadata": {}, |
| 42 | + "source": [ |
| 43 | + "# 3. yanolja/KoSOLAR-10.7B-v0.2 모델 컴파일 후에 로딩\n", |
| 44 | + "- 아래의 파라미터에 대해서 기존에는 128 이었으나, 1024 로 변경하여 진행 함.\n", |
| 45 | + " - max_model_len=1024,\n", |
| 46 | + " - block_size=1024," |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "markdown", |
| 51 | + "metadata": {}, |
| 52 | + "source": [ |
| 53 | + "아래는 약 70 분이 소요 되었습니다." |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": 3, |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [ |
| 61 | + { |
| 62 | + "name": "stdout", |
| 63 | + "output_type": "stream", |
| 64 | + "text": [ |
| 65 | + "INFO 03-31 12:39:04 llm_engine.py:87] Initializing an LLM engine with config: model='yanolja/KoSOLAR-10.7B-v0.2', tokenizer='yanolja/KoSOLAR-10.7B-v0.2', tokenizer_mode=auto, revision=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=1024, download_dir=None, load_format=auto, tensor_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cpu, seed=0)\n" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "name": "stdout", |
| 70 | + "output_type": "stream", |
| 71 | + "text": [ |
| 72 | + "2024-03-31 12:42:28.000186: 70201 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/neuron-compile-cache\n", |
| 73 | + "2024-03-31 12:42:28.000196: 70201 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd: neuronx-cc compile --target=trn1 --framework=XLA /tmp/ubuntu/neuroncc_compile_workdir/084afca8-7030-4d30-bde7-7ada13ca1f93/model.MODULE_9f050279deca50a4ec46+2c2d707e.hlo_module.pb --output /tmp/ubuntu/neuroncc_compile_workdir/084afca8-7030-4d30-bde7-7ada13ca1f93/model.MODULE_9f050279deca50a4ec46+2c2d707e.neff --model-type=transformer --auto-cast=none --verbose=35\n", |
| 74 | + "2024-03-31 12:42:28.000407: 70202 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/neuron-compile-cache\n", |
| 75 | + "2024-03-31 12:42:28.000470: 70202 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd: neuronx-cc compile --target=trn1 --framework=XLA /tmp/ubuntu/neuroncc_compile_workdir/06656340-372a-4b43-8ad6-1c5ebf6a6dbd/model.MODULE_d80e3715f30f9a482a22+2c2d707e.hlo_module.pb --output /tmp/ubuntu/neuroncc_compile_workdir/06656340-372a-4b43-8ad6-1c5ebf6a6dbd/model.MODULE_d80e3715f30f9a482a22+2c2d707e.neff --model-type=transformer --auto-cast=none --verbose=35\n", |
| 76 | + "..............................................................................................\n", |
| 77 | + "Compiler status PASS\n", |
| 78 | + "................................................................................................................................................\n", |
| 79 | + "Compiler status PASS\n", |
| 80 | + "INFO 03-31 13:47:17 llm_engine.py:357] # GPU blocks: 8, # CPU blocks: 0\n" |
| 81 | + ] |
| 82 | + } |
| 83 | + ], |
| 84 | + "source": [ |
| 85 | + "llm = LLM(\n", |
| 86 | + " # model=\"TinyLlama/TinyLlama-1.1B-Chat-v1.0\",\n", |
| 87 | + " model=\"yanolja/KoSOLAR-10.7B-v0.2\",\n", |
| 88 | + " max_num_seqs=8,\n", |
| 89 | + " # The max_model_len and block_size arguments are required to be same as\n", |
| 90 | + " # max sequence length when targeting neuron device.\n", |
| 91 | + " # Currently, this is a known limitation in continuous batching support\n", |
| 92 | + " # in transformers-neuronx.\n", |
| 93 | + " # TODO(liangfu): Support paged-attention in transformers-neuronx.\n", |
| 94 | + " max_model_len=1024,\n", |
| 95 | + " block_size=1024,\n", |
| 96 | + " # The device can be automatically detected when AWS Neuron SDK is installed.\n", |
| 97 | + " # The device argument can be either unspecified for automated detection,\n", |
| 98 | + " # or explicitly assigned.\n", |
| 99 | + " device=\"neuron\",\n", |
| 100 | + " tensor_parallel_size=2)" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "markdown", |
| 105 | + "metadata": {}, |
| 106 | + "source": [ |
| 107 | + "# 4. 모델 배치 추론" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": 4, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "prompts = [\n", |
| 117 | + " \"Hello, my name is\",\n", |
| 118 | + " \"The president of the United States is\",\n", |
| 119 | + " \"The capital of France is\",\n", |
| 120 | + " \"The future of AI is\",\n", |
| 121 | + "]\n", |
| 122 | + "sampling_params = SamplingParams(temperature=0.8, top_p=0.95)\n" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": 5, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [ |
| 130 | + { |
| 131 | + "name": "stderr", |
| 132 | + "output_type": "stream", |
| 133 | + "text": [ |
| 134 | + "Processed prompts: 0%| | 0/4 [00:00<?, ?it/s]" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "name": "stdout", |
| 139 | + "output_type": "stream", |
| 140 | + "text": [ |
| 141 | + "2024-Mar-31 13:47:31.0203 69535:75779 [1] nccl_net_ofi_init:1415 CCOM WARN NET/OFI aws-ofi-nccl initialization failed\n", |
| 142 | + "2024-Mar-31 13:47:31.0203 69535:75779 [1] init.cc:137 CCOM WARN OFI plugin initNet() failed is EFA enabled?\n" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "name": "stderr", |
| 147 | + "output_type": "stream", |
| 148 | + "text": [ |
| 149 | + "Processed prompts: 100%|██████████| 4/4 [00:02<00:00, 1.48it/s]" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "name": "stdout", |
| 154 | + "output_type": "stream", |
| 155 | + "text": [ |
| 156 | + "Prompt: 'Hello, my name is', Generated text: ' Jaime and I am a Writer, Editor, and Social Media Manager.\\n'\n", |
| 157 | + "Prompt: 'The president of the United States is', Generated text: ' now speaking. He\\'s delivering the final speech of his administration.\\n\"'\n", |
| 158 | + "Prompt: 'The capital of France is', Generated text: ' home to about 2.2 million people.\\nThe population is growing rapidly'\n", |
| 159 | + "Prompt: 'The future of AI is', Generated text: ' in our hands: KLF19 Day 1 | GoKh'\n" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "name": "stderr", |
| 164 | + "output_type": "stream", |
| 165 | + "text": [ |
| 166 | + "\n" |
| 167 | + ] |
| 168 | + } |
| 169 | + ], |
| 170 | + "source": [ |
| 171 | + "outputs = llm.generate(prompts, sampling_params)\n", |
| 172 | + "# Print the outputs.\n", |
| 173 | + "for output in outputs:\n", |
| 174 | + " prompt = output.prompt\n", |
| 175 | + " generated_text = output.outputs[0].text\n", |
| 176 | + " print(f\"Prompt: {prompt!r}, Generated text: {generated_text!r}\")" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": 6, |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [], |
| 184 | + "source": [ |
| 185 | + "prompts = [\n", |
| 186 | + " \"대한민국의 수도는 어디야?\",\n", |
| 187 | + " \"사과의 건강 효능에 대해서 알려줘\",\n", |
| 188 | + "]\n", |
| 189 | + "sampling_params = SamplingParams(temperature=0.8, top_p=0.95)\n" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": 7, |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [ |
| 197 | + { |
| 198 | + "name": "stderr", |
| 199 | + "output_type": "stream", |
| 200 | + "text": [ |
| 201 | + "Processed prompts: 100%|██████████| 2/2 [00:01<00:00, 1.39it/s]" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "name": "stdout", |
| 206 | + "output_type": "stream", |
| 207 | + "text": [ |
| 208 | + "Prompt: '대한민국의 수도는 어디야?', Generated text: ' 그 질문에 대한 답이 서울이라면 이미 당신은 한국 역사의 뿌리'\n", |
| 209 | + "Prompt: '사과의 건강 효능에 대해서 알려줘', Generated text: ' 줘\\n사과의 건강 효능에 대해서 알려줘.\\n중학교'\n" |
| 210 | + ] |
| 211 | + }, |
| 212 | + { |
| 213 | + "name": "stderr", |
| 214 | + "output_type": "stream", |
| 215 | + "text": [ |
| 216 | + "\n" |
| 217 | + ] |
| 218 | + } |
| 219 | + ], |
| 220 | + "source": [ |
| 221 | + "outputs = llm.generate(prompts, sampling_params)\n", |
| 222 | + "# Print the outputs.\n", |
| 223 | + "for output in outputs:\n", |
| 224 | + " prompt = output.prompt\n", |
| 225 | + " generated_text = output.outputs[0].text\n", |
| 226 | + " print(f\"Prompt: {prompt!r}, Generated text: {generated_text!r}\")" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": null, |
| 232 | + "metadata": {}, |
| 233 | + "outputs": [], |
| 234 | + "source": [] |
| 235 | + } |
| 236 | + ], |
| 237 | + "metadata": { |
| 238 | + "kernelspec": { |
| 239 | + "display_name": "Python (torch-neuronx)", |
| 240 | + "language": "python", |
| 241 | + "name": "aws_neuron_venv_pytorch" |
| 242 | + }, |
| 243 | + "language_info": { |
| 244 | + "codemirror_mode": { |
| 245 | + "name": "ipython", |
| 246 | + "version": 3 |
| 247 | + }, |
| 248 | + "file_extension": ".py", |
| 249 | + "mimetype": "text/x-python", |
| 250 | + "name": "python", |
| 251 | + "nbconvert_exporter": "python", |
| 252 | + "pygments_lexer": "ipython3", |
| 253 | + "version": "3.10.12" |
| 254 | + } |
| 255 | + }, |
| 256 | + "nbformat": 4, |
| 257 | + "nbformat_minor": 2 |
| 258 | +} |
0 commit comments