@@ -1741,15 +1741,15 @@ def score(self, X: SUPPORTED_FEAT_TYPES, y: SUPPORTED_TARGET_TYPES) -> float:
17411741 check_is_fitted (self )
17421742
17431743 prediction = self .predict (X )
1744- y = self .InputValidator .target_validator .transform (y )
1744+ y = self .input_validator .target_validator .transform (y )
17451745
17461746 # Encode the prediction using the input validator
17471747 # We train autosklearn with a encoded version of y,
17481748 # which is decoded by predict().
17491749 # Above call to validate() encodes the y given for score()
17501750 # Below call encodes the prediction, so we compare in the
17511751 # same representation domain
1752- prediction = self .InputValidator .target_validator .transform (prediction )
1752+ prediction = self .input_validator .target_validator .transform (prediction )
17531753
17541754 return compute_single_metric (
17551755 solution = y ,
@@ -2267,16 +2267,15 @@ def predict(
22672267 n_jobs : int = 1 ,
22682268 ) -> np .ndarray :
22692269 check_is_fitted (self )
2270- assert self .InputValidator is not None
2271-
22722270 probabilities = self .predict_proba (X , batch_size = batch_size , n_jobs = n_jobs )
2271+ validator = self .input_validator
22732272
2274- if self . InputValidator .target_validator .is_single_column_target ():
2273+ if validator .target_validator .is_single_column_target ():
22752274 predicted_indexes = np .argmax (probabilities , axis = 1 )
22762275 else :
22772276 predicted_indexes = (probabilities > 0.5 ).astype (int )
22782277
2279- return self . InputValidator .target_validator .inverse_transform (predicted_indexes )
2278+ return validator .target_validator .inverse_transform (predicted_indexes )
22802279
22812280 def predict_proba (
22822281 self ,
0 commit comments