@@ -1561,6 +1561,32 @@ static bool llm_load_tensors(
15611561 layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
15621562 }
15631563 } break;
1564+ case LLM_ARCH_COHERE2:
1565+ {
1566+ model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
1567+
1568+ // output
1569+ model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
1570+ // init output from the input tok embed
1571+ model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
1572+ llama_model_loader::TENSOR_DUPLICATED);
1573+
1574+ for (int i = 0; i < n_layer; ++i) {
1575+ auto & layer = model.layers[i];
1576+
1577+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
1578+
1579+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
1580+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
1581+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
1582+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
1583+
1584+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
1585+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
1586+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
1587+ }
1588+ }
1589+ break;
15641590 case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
15651591 {
15661592 model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -7642,6 +7668,137 @@ struct llm_build_context {
76427668
76437669 }
76447670
7671+ struct ggml_cgraph * build_cohere2() {
7672+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
7673+
7674+ const int64_t n_embd_head = hparams.n_embd_head_v;
7675+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7676+ const float f_logit_scale = hparams.f_logit_scale;
7677+
7678+ struct ggml_tensor * cur;
7679+ struct ggml_tensor * inpL;
7680+
7681+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
7682+
7683+ // inp_pos - contains the positions
7684+ struct ggml_tensor * inp_pos = build_inp_pos();
7685+
7686+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
7687+ // cohere2 requires different mask for layers using sliding window (SWA)
7688+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
7689+ struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
7690+
7691+ // sliding window switch pattern
7692+ const int32_t sliding_window_pattern = 4;
7693+
7694+ for (int il = 0; il < n_layer; ++il) {
7695+ // three layers sliding window attention (window size 4096) and ROPE
7696+ // fourth layer uses global attention without positional embeddings
7697+ const bool is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1);
7698+ struct ggml_tensor * KQ_mask_l = is_sliding ? KQ_mask_swa : KQ_mask;
7699+
7700+ // norm
7701+ cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM, cb, il);
7702+ cb(cur, "attn_norm", il);
7703+ struct ggml_tensor * ffn_inp = cur;
7704+
7705+ // self-attention
7706+ {
7707+ // rope freq factors for 128k context
7708+ struct ggml_tensor * rope_factors = build_rope_factors(il);
7709+
7710+ // compute Q and K and RoPE them
7711+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
7712+ cb(Qcur, "Qcur", il);
7713+ if (model.layers[il].bq) {
7714+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
7715+ cb(Qcur, "Qcur", il);
7716+ }
7717+
7718+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
7719+ cb(Kcur, "Kcur", il);
7720+ if (model.layers[il].bk) {
7721+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
7722+ cb(Kcur, "Kcur", il);
7723+ }
7724+
7725+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
7726+ cb(Vcur, "Vcur", il);
7727+ if (model.layers[il].bv) {
7728+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
7729+ cb(Vcur, "Vcur", il);
7730+ }
7731+
7732+ if (is_sliding) {
7733+ Qcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
7734+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor,
7735+ beta_fast, beta_slow);
7736+ cb(Qcur, "Qcur", il);
7737+
7738+ Kcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
7739+ rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
7740+ attn_factor, beta_fast, beta_slow);
7741+ cb(Kcur, "Kcur", il);
7742+ } else {
7743+ // For non-sliding layers, just reshape without applying RoPE
7744+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
7745+ cb(Qcur, "Qcur", il);
7746+
7747+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
7748+ cb(Kcur, "Kcur", il);
7749+ }
7750+
7751+ cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur,
7752+ KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f / sqrtf(float(n_embd_head)), cb, il);
7753+ }
7754+
7755+ if (il == n_layer - 1) {
7756+ // skip computing output for unused tokens
7757+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
7758+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
7759+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
7760+ ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
7761+ }
7762+
7763+ struct ggml_tensor * attn_out = cur;
7764+
7765+ // feed-forward network
7766+ {
7767+ cur = llm_build_ffn(ctx0, lctx, ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
7768+ NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
7769+ cb, il);
7770+ cb(cur, "ffn_out", il);
7771+ }
7772+
7773+ // add together residual + FFN + self-attention
7774+ cur = ggml_add(ctx0, cur, inpL);
7775+ cur = ggml_add(ctx0, cur, attn_out);
7776+ cur = lctx.cvec.apply_to(ctx0, cur, il);
7777+ cb(cur, "l_out", il);
7778+
7779+ // input for next layer
7780+ inpL = cur;
7781+ }
7782+
7783+ cur = inpL;
7784+
7785+ cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM, cb, -1);
7786+ cb(cur, "result_norm", -1);
7787+
7788+ // lm_head
7789+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
7790+
7791+ if (f_logit_scale) {
7792+ cur = ggml_scale(ctx0, cur, f_logit_scale);
7793+ }
7794+
7795+ cb(cur, "result_output", -1);
7796+
7797+ ggml_build_forward_expand(gf, cur);
7798+
7799+ return gf;
7800+ }
7801+
76457802 // ref: https://allenai.org/olmo
76467803 // based on the original build_llama() function, changes:
76477804 // * non-parametric layer norm
@@ -10393,6 +10550,10 @@ static struct ggml_cgraph * llama_build_graph(
1039310550 {
1039410551 result = llm.build_command_r();
1039510552 } break;
10553+ case LLM_ARCH_COHERE2:
10554+ {
10555+ result = llm.build_cohere2();
10556+ } break;
1039610557 case LLM_ARCH_DBRX:
1039710558 {
1039810559 result = llm.build_dbrx();
0 commit comments