@@ -913,7 +913,7 @@ It returns the following:
913913- ``best_match_idx ``: Index of the best solution in the current
914914 population.
915915
916- .. _plotfitness-1 :
916+ .. _plotfitness :
917917
918918``plot_fitness() ``
919919------------------
@@ -946,7 +946,7 @@ and higher, this method accepts the following parameters:
946946
9479478. ``save_dir ``: Directory to save the figure.
948948
949- .. _plotnewsolutionrate-1 :
949+ .. _plotnewsolutionrate :
950950
951951``plot_new_solution_rate() ``
952952----------------------------
@@ -979,7 +979,7 @@ This method accepts the following parameters:
979979
9809808. ``save_dir ``: Directory to save the figure.
981981
982- .. _plotgenes-1 :
982+ .. _plotgenes :
983983
984984``plot_genes() ``
985985----------------
@@ -1229,7 +1229,7 @@ The next step is to import PyGAD as follows:
12291229 The ``pygad.GA `` class holds the implementation of all methods for
12301230running the genetic algorithm.
12311231
1232- .. _create-an-instance-of-the-pygadga-class-1 :
1232+ .. _create-an-instance-of-the-pygadga-class :
12331233
12341234Create an Instance of the ``pygad.GA `` Class
12351235--------------------------------------------
@@ -2403,6 +2403,8 @@ The function should return 2 outputs:
240324032. The indices of the selected parents inside the population. It is a 1D
24042404 list with length equal to the number of selected parents.
24052405
2406+ The outputs must be of type ``numpy.ndarray ``.
2407+
24062408Here is a template for building a custom parent selection function.
24072409
24082410.. code :: python
@@ -2427,7 +2429,7 @@ parents are selected. The number of parents is equal to the value in the
24272429 for parent_num in range (num_parents):
24282430 parents[parent_num, :] = ga_instance.population[fitness_sorted[parent_num], :].copy()
24292431
2430- return parents, fitness_sorted[:num_parents]
2432+ return parents, numpy.array( fitness_sorted[:num_parents])
24312433
24322434 Finally, the defined function is assigned to the
24332435``parent_selection_type `` parameter as in the next code.
@@ -2474,7 +2476,7 @@ previous 3 user-defined functions instead of the built-in functions.
24742476 for parent_num in range (num_parents):
24752477 parents[parent_num, :] = ga_instance.population[fitness_sorted[parent_num], :].copy()
24762478
2477- return parents, fitness_sorted[:num_parents]
2479+ return parents, numpy.array( fitness_sorted[:num_parents])
24782480
24792481 def crossover_func (parents , offspring_size , ga_instance ):
24802482
@@ -3004,7 +3006,7 @@ methods.
30043006The ``plot_fitness() `` method shows the fitness value for each
30053007generation.
30063008
3007- .. _plottypeplot-1 :
3009+ .. _plottypeplot :
30083010
30093011``plot_type="plot" ``
30103012~~~~~~~~~~~~~~~~~~~~
@@ -3021,7 +3023,7 @@ line connecting the fitness values across all generations:
30213023 .. figure :: https://user-images.githubusercontent.com/16560492/122472609-d02f5280-cf8e-11eb-88a7-f9366ff6e7c6.png
30223024 :alt:
30233025
3024- .. _plottypescatter-1 :
3026+ .. _plottypescatter :
30253027
30263028``plot_type="scatter" ``
30273029~~~~~~~~~~~~~~~~~~~~~~~
@@ -3037,7 +3039,7 @@ these dots can be changed using the ``linewidth`` parameter.
30373039 .. figure :: https://user-images.githubusercontent.com/16560492/122473159-75e2c180-cf8f-11eb-942d-31279b286dbd.png
30383040 :alt:
30393041
3040- .. _plottypebar-1 :
3042+ .. _plottypebar :
30413043
30423044``plot_type="bar" ``
30433045~~~~~~~~~~~~~~~~~~~
@@ -3393,8 +3395,6 @@ parameter:
33933395 given the value 0, this means do not use parallel processing. This is
33943396 identical to ``parallel_processing=None ``.
33953397
3396- .. _examples-1 :
3397-
33983398Examples
33993399--------
34003400
0 commit comments