@@ -535,7 +535,7 @@ value (i.e. accuracy) of 100 is reached after around 180 generations.
535535
536536 ga_instance.plot_fitness()
537537
538- .. figure :: https://user-images.githubusercontent.com/16560492/82078638-c11e0700-96e1-11ea-8aa9-c36761c5e9c7.png
538+ .. image :: https://user-images.githubusercontent.com/16560492/82078638-c11e0700-96e1-11ea-8aa9-c36761c5e9c7.png
539539 :alt:
540540
541541By running the code again, a different initial population is created and
@@ -930,7 +930,7 @@ The number of wrong classifications is only 1 and the accuracy is
930930
931931 The next figure shows how fitness value evolves by generation.
932932
933- .. figure :: https://user-images.githubusercontent.com/16560492/82152993-21898180-9865-11ea-8387-b995f88b83f7.png
933+ .. image :: https://user-images.githubusercontent.com/16560492/82152993-21898180-9865-11ea-8387-b995f88b83f7.png
934934 :alt:
935935
936936Regression Example 1
@@ -998,10 +998,10 @@ for regression.
998998 GANN_instance .update_population_trained_weights(population_trained_weights = population_matrices)
999999
10001000 print (" Generation = {generation} " .format(generation = ga_instance.generations_completed))
1001- print (" Fitness = {fitness} " .format(fitness = ga_instance.best_solution()[1 ]))
1002- print (" Change = {change} " .format(change = ga_instance.best_solution()[1 ] - last_fitness))
1001+ print (" Fitness = {fitness} " .format(fitness = ga_instance.best_solution(pop_fitness = ga_instance.last_generation_fitness )[1 ]))
1002+ print (" Change = {change} " .format(change = ga_instance.best_solution(pop_fitness = ga_instance.last_generation_fitness )[1 ] - last_fitness))
10031003
1004- last_fitness = ga_instance.best_solution()[1 ].copy()
1004+ last_fitness = ga_instance.best_solution(pop_fitness = ga_instance.last_generation_fitness )[1 ].copy()
10051005
10061006 # Holds the fitness value of the previous generation.
10071007 last_fitness = 0
@@ -1011,8 +1011,8 @@ for regression.
10111011 [8 , 15 , 20 , 13 ]])
10121012
10131013 # Preparing the NumPy array of the outputs.
1014- data_outputs = numpy.array([0.1 ,
1015- 1.5 ])
1014+ data_outputs = numpy.array([[ 0.1 , 0.2 ],
1015+ [ 1.8 , 1.5 ] ])
10161016
10171017 # The length of the input vector for each sample (i.e. number of neurons in the input layer).
10181018 num_inputs = data_inputs.shape[1 ]
@@ -1022,7 +1022,7 @@ for regression.
10221022 GANN_instance = pygad.gann.GANN(num_solutions = num_solutions,
10231023 num_neurons_input = num_inputs,
10241024 num_neurons_hidden_layers = [2 ],
1025- num_neurons_output = 1 ,
1025+ num_neurons_output = 2 ,
10261026 hidden_activations = [" relu" ],
10271027 output_activation = " None" )
10281028
@@ -1071,7 +1071,7 @@ for regression.
10711071 ga_instance.plot_fitness()
10721072
10731073 # Returning the details of the best solution.
1074- solution, solution_fitness, solution_idx = ga_instance.best_solution()
1074+ solution, solution_fitness, solution_idx = ga_instance.best_solution(pop_fitness = ga_instance.last_generation_fitness )
10751075 print (" Parameters of the best solution : {solution} " .format(solution = solution))
10761076 print (" Fitness value of the best solution = {solution_fitness} " .format(solution_fitness = solution_fitness))
10771077 print (" Index of the best solution : {solution_idx} " .format(solution_idx = solution_idx))
@@ -1092,7 +1092,7 @@ for regression.
10921092 The next figure shows how the fitness value changes for the generations
10931093used.
10941094
1095- .. figure :: https://user-images.githubusercontent.com/16560492/92948154-3cf24b00-f459-11ea-94ea-952b66ab2145.png
1095+ .. image :: https://user-images.githubusercontent.com/16560492/92948154-3cf24b00-f459-11ea-94ea-952b66ab2145.png
10961096 :alt:
10971097
10981098Regression Example 2 - Fish Weight Prediction
@@ -1164,15 +1164,15 @@ Here is the complete code.
11641164 GANN_instance .update_population_trained_weights(population_trained_weights = population_matrices)
11651165
11661166 print (" Generation = {generation} " .format(generation = ga_instance.generations_completed))
1167- print (" Fitness = {fitness} " .format(fitness = ga_instance.best_solution()[1 ]))
1168- print (" Change = {change} " .format(change = ga_instance.best_solution()[1 ] - last_fitness))
1167+ print (" Fitness = {fitness} " .format(fitness = ga_instance.best_solution(pop_fitness = ga_instance.last_generation_fitness )[1 ]))
1168+ print (" Change = {change} " .format(change = ga_instance.best_solution(pop_fitness = ga_instance.last_generation_fitness )[1 ] - last_fitness))
11691169
1170- last_fitness = ga_instance.best_solution()[1 ].copy()
1170+ last_fitness = ga_instance.best_solution(pop_fitness = ga_instance.last_generation_fitness )[1 ].copy()
11711171
11721172 # Holds the fitness value of the previous generation.
11731173 last_fitness = 0
11741174
1175- data = numpy.array(pandas.read_csv(" Fish.csv" ))
1175+ data = numpy.array(pandas.read_csv(" ../data/ Fish.csv" ))
11761176
11771177 # Preparing the NumPy array of the inputs.
11781178 data_inputs = numpy.asarray(data[:, 2 :], dtype = numpy.float32)
@@ -1237,7 +1237,7 @@ Here is the complete code.
12371237 ga_instance.plot_fitness()
12381238
12391239 # Returning the details of the best solution.
1240- solution, solution_fitness, solution_idx = ga_instance.best_solution()
1240+ solution, solution_fitness, solution_idx = ga_instance.best_solution(pop_fitness = ga_instance.last_generation_fitness )
12411241 print (" Parameters of the best solution : {solution} " .format(solution = solution))
12421242 print (" Fitness value of the best solution = {solution_fitness} " .format(solution_fitness = solution_fitness))
12431243 print (" Index of the best solution : {solution_idx} " .format(solution_idx = solution_idx))
@@ -1258,5 +1258,5 @@ Here is the complete code.
12581258 The next figure shows how the fitness value changes for the 500
12591259generations used.
12601260
1261- .. figure :: https://user-images.githubusercontent.com/16560492/92948486-bbe78380-f459-11ea-9e31-0d4c7269d606.png
1261+ .. image :: https://user-images.githubusercontent.com/16560492/92948486-bbe78380-f459-11ea-9e31-0d4c7269d606.png
12621262 :alt:
0 commit comments