1- .. _header-n359 :
1+ .. _header-n0 :
22
33Release History
44===============
55
6- .. _header-n361 :
6+ .. figure :: https://user-images.githubusercontent.com/16560492/101267295-c74c0180-375f-11eb-9ad0-f8e37bd796ce.png
7+ :alt:
8+
9+ .. _header-n3 :
710
811PyGAD 1.0.17
912------------
@@ -15,7 +18,7 @@ Release Date: 15 April 2020
1518 values for the solutions. This allows the project to be customized to
1619 any problem by building the right fitness function.
1720
18- .. _header-n366 :
21+ .. _header-n8 :
1922
2023PyGAD 1.0.20
2124-------------
@@ -35,7 +38,7 @@ Release Date: 4 May 2020
35384. The code object ``__code__ `` of the passed fitness function is
3639 checked to ensure it has the right number of parameters.
3740
38- .. _header-n377 :
41+ .. _header-n19 :
3942
4043PyGAD 2.0.0
4144------------
@@ -61,7 +64,7 @@ Release Date: 13 May 2020
6164 is called after each generation. This helps the user to do
6265 post-processing or debugging operations after each generation.
6366
64- .. _header-n388 :
67+ .. _header-n30 :
6568
6669PyGAD 2.1.0
6770-----------
@@ -97,7 +100,7 @@ Release Date: 14 May 2020
97100
981012. Mutation is applied independently for the genes.
99102
100- .. _header-n403 :
103+ .. _header-n45 :
101104
102105PyGAD 2.2.1
103106-----------
@@ -107,7 +110,7 @@ Release Date: 17 May 2020
1071101. Adding 2 extra modules (pygad.nn and pygad.gann) for building and
108111 training neural networks with the genetic algorithm.
109112
110- .. _header-n408 :
113+ .. _header-n50 :
111114
112115PyGAD 2.2.2
113116-----------
@@ -141,7 +144,7 @@ The new gene value is **0.1**.
141144 ``crossover_type `` parameters of the pygad.GA class constructor. When
142145 ``None ``, this means the step is bypassed and has no action.
143146
144- .. _header-n421 :
147+ .. _header-n63 :
145148
146149PyGAD 2.3.0
147150-----------
@@ -166,7 +169,7 @@ Release date: 1 June 2020
1661696. The name of the ``pygad.nn.train_network() `` function is changed to
167170 ``pygad.nn.train() ``.
168171
169- .. _header-n436 :
172+ .. _header-n78 :
170173
171174PyGAD 2.4.0
172175-----------
@@ -204,7 +207,7 @@ through more generations because no further improvement is possible.
204207 if ga_instance.best_solution()[1 ] >= 70 :
205208 return " stop"
206209
207- .. _header-n446 :
210+ .. _header-n88 :
208211
209212PyGAD 2.5.0
210213-----------
@@ -300,7 +303,7 @@ If the user did not assign the initial population to the
300303randomly based on the ``gene_space `` parameter. Moreover, the mutation
301304is applied based on this parameter.
302305
303- .. _header-n474 :
306+ .. _header-n116 :
304307
305308PyGAD 2.6.0
306309------------
@@ -318,7 +321,7 @@ Release Date: 6 August 2020
318321 ``on_fitness ``, ``on_parents ``, ``on_crossover ``, ``on_mutation ``,
319322 ``on_generation ``, and ``on_stop ``.
320323
321- .. _header-n483 :
324+ .. _header-n125 :
322325
323326PyGAD 2.7.0
324327-----------
@@ -377,7 +380,7 @@ parameter or set it to ``"classification"`` (default value). In this
377380case, the activation function of the last layer can be set to any type
378381(e.g. softmax).
379382
380- .. _header-n507 :
383+ .. _header-n149 :
381384
382385PyGAD 2.7.1
383386-----------
@@ -387,7 +390,7 @@ Release Date: 11 September 2020
3873901. A bug fix when the ``problem_type `` argument is set to
388391 ``regression ``.
389392
390- .. _header-n512 :
393+ .. _header-n154 :
391394
392395PyGAD 2.7.2
393396-----------
@@ -397,7 +400,7 @@ Release Date: 14 September 2020
3974001. Bug fix to support building and training regression neural networks
398401 with multiple outputs.
399402
400- .. _header-n517 :
403+ .. _header-n159 :
401404
402405PyGAD 2.8.0
403406-----------
@@ -407,7 +410,7 @@ Release Date: 20 September 2020
4074101. Support of a new module named ``kerasga `` so that the Keras models
408411 can be trained by the genetic algorithm using PyGAD.
409412
410- .. _header-n522 :
413+ .. _header-n164 :
411414
412415PyGAD 2.8.1
413416-----------
@@ -420,7 +423,7 @@ Release Date: 3 October 2020
420423 Management, Faculty of Engineering, Alexandria University,
421424 Egypt <https://www.linkedin.com/in/hamadakassem> `__.
422425
423- .. _header-n527 :
426+ .. _header-n169 :
424427
425428PyGAD 2.9.0
426429------------
@@ -448,7 +451,7 @@ Release Date: 06 December 2020
448451 ``numpy.int64 ``, ``numpy.float ``, ``numpy.float16 ``,
449452 ``numpy.float32 ``, or ``numpy.float64 ``.
450453
451- .. _header-n540 :
454+ .. _header-n182 :
452455
453456PyGAD 2.10.0
454457------------
@@ -509,7 +512,7 @@ Release Date: 03 January 2021
509512 ``cal_pop_fitness() `` method is called to calculate the fitness
510513 values of the population.
511514
512- .. _header-n565 :
515+ .. _header-n207 :
513516
514517PyGAD 2.10.1
515518------------
@@ -541,7 +544,7 @@ Release Date: 10 January 2021
541544 pointing about that at
542545 `GitHub <https://github.com/ahmedfgad/KerasGA/issues/1 >`__.
543546
544- .. _header-n721 :
547+ .. _header-n218 :
545548
546549PyGAD 2.10.2
547550------------
@@ -552,7 +555,40 @@ Release Date: 15 January 2021
552555 more information:
553556 https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/25
554557
555- .. _header-n720 :
558+ .. _header-n223 :
559+
560+ PyGAD 2.11.0
561+ ------------
562+
563+ Release Date: 16 February 2021
564+
565+ 1. In the ``gene_space `` argument, the user can use a dictionary to
566+ specify the lower and upper limits of the gene. This dictionary must
567+ have only 2 items with keys ``low `` and ``high `` to specify the low
568+ and high limits of the gene, respectively. This way, PyGAD takes care
569+ of not exceeding the value limits of the gene. For a problem with
570+ only 2 genes, then using
571+ ``gene_space=[{'low': 1, 'high': 5}, {'low': 0.2, 'high': 0.81}] ``
572+ means the accepted values in the first gene start from 1 (inclusive)
573+ to 5 (exclusive) while the second one has values between 0.2
574+ (inclusive) and 0.85 (exclusive). For more information, please check
575+ the `Limit the Gene Value
576+ Range <https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#limit-the-gene-value-range> `__
577+ section of the documentation.
578+
579+ 2. The ``plot_result() `` method returns the figure so that the user can
580+ save it.
581+
582+ 3. Bug fixes in copying elements from the gene space.
583+
584+ 4. For a gene with a set of discrete values (more than 1 value) in the
585+ ``gene_space `` parameter like ``[0, 1] ``, it was possible that the
586+ gene value may not change after mutation. That is if the current
587+ value is 0, then the randomly selected value could also be 0. Now, it
588+ is verified that the new value is changed. So, if the current value
589+ is 0, then the new value after mutation will not be 0 but 1.
590+
591+ .. _header-n234 :
556592
557593PyGAD Projects at GitHub
558594========================
@@ -562,7 +598,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
562598open-source GitHub projects. A brief note about these projects is given
563599in the next subsections.
564600
565- .. _header-n578 :
601+ .. _header-n236 :
566602
567603`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
568604--------------------------------------------------------------------------------
@@ -573,7 +609,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
573609is the first project which is an open-source Python 3 project for
574610implementing the genetic algorithm based on NumPy.
575611
576- .. _header-n581 :
612+ .. _header-n239 :
577613
578614`NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__
579615----------------------------------------------------
@@ -587,7 +623,7 @@ neural network without using a training algorithm. Currently, it only
587623supports classification and later regression will be also supported.
588624Moreover, only one class is supported per sample.
589625
590- .. _header-n584 :
626+ .. _header-n242 :
591627
592628`NeuralGenetic <https://github.com/ahmedfgad/NeuralGenetic >`__
593629--------------------------------------------------------------
@@ -600,7 +636,7 @@ projects
600636`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
601637and `NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__.
602638
603- .. _header-n587 :
639+ .. _header-n245 :
604640
605641`NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__
606642----------------------------------------------------
@@ -612,7 +648,7 @@ convolutional neural networks using NumPy. The purpose of this project
612648is to only implement the **forward pass ** of a convolutional neural
613649network without using a training algorithm.
614650
615- .. _header-n590 :
651+ .. _header-n248 :
616652
617653`CNNGenetic <https://github.com/ahmedfgad/CNNGenetic >`__
618654--------------------------------------------------------
@@ -624,7 +660,7 @@ convolutional neural networks using the genetic algorithm. It uses the
624660`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
625661project for building the genetic algorithm.
626662
627- .. _header-n593 :
663+ .. _header-n251 :
628664
629665`KerasGA <https://github.com/ahmedfgad/KerasGA >`__
630666--------------------------------------------------
637673`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
638674project for building the genetic algorithm.
639675
640- .. _header-n596 :
676+ .. _header-n254 :
641677
642678`TorchGA <https://github.com/ahmedfgad/TorchGA >`__
643679--------------------------------------------------
@@ -653,7 +689,7 @@ project for building the genetic algorithm.
653689`pygad.torchga <https://github.com/ahmedfgad/TorchGA >`__:
654690https://github.com/ahmedfgad/TorchGA
655691
656- .. _header-n600 :
692+ .. _header-n258 :
657693
658694Submitting Issues
659695=================
@@ -670,7 +706,7 @@ is not working properly or to ask for questions.
670706If this is not a proper option for you, then check the **Contact Us **
671707section for more contact details.
672708
673- .. _header-n604 :
709+ .. _header-n262 :
674710
675711Ask for Feature
676712===============
@@ -687,7 +723,7 @@ to ahmed.f.gad@gmail.com.
687723
688724Also check the **Contact Us ** section for more contact details.
689725
690- .. _header-n608 :
726+ .. _header-n266 :
691727
692728Projects Built using PyGAD
693729==========================
@@ -706,15 +742,15 @@ Within your message, please send the following details:
706742
707743- Preferably, a link that directs the readers to your project
708744
709- .. _header-n619 :
745+ .. _header-n277 :
710746
711747For More Information
712748====================
713749
714750There are different resources that can be used to get started with the
715751genetic algorithm and building it in Python.
716752
717- .. _header-n621 :
753+ .. _header-n279 :
718754
719755Tutorial: Implementing Genetic Algorithm in Python
720756--------------------------------------------------
@@ -738,7 +774,7 @@ good resource to start with coding the genetic algorithm.
738774
739775|image0 |
740776
741- .. _header-n632 :
777+ .. _header-n290 :
742778
743779Tutorial: Introduction to Genetic Algorithm
744780-------------------------------------------
@@ -757,7 +793,7 @@ which is available at these links:
757793
758794|image1 |
759795
760- .. _header-n642 :
796+ .. _header-n300 :
761797
762798Tutorial: Build Neural Networks in Python
763799-----------------------------------------
@@ -777,7 +813,7 @@ available at these links:
777813
778814|image2 |
779815
780- .. _header-n652 :
816+ .. _header-n310 :
781817
782818Tutorial: Optimize Neural Networks with Genetic Algorithm
783819---------------------------------------------------------
@@ -797,7 +833,7 @@ available at these links:
797833
798834|image3 |
799835
800- .. _header-n662 :
836+ .. _header-n320 :
801837
802838Tutorial: Building CNN in Python
803839--------------------------------
@@ -823,7 +859,7 @@ good resource to start with coding CNNs.
823859
824860|image4 |
825861
826- .. _header-n675 :
862+ .. _header-n333 :
827863
828864Tutorial: Derivation of CNN from FCNN
829865-------------------------------------
@@ -842,7 +878,7 @@ which is available at these links:
842878
843879|image5 |
844880
845- .. _header-n685 :
881+ .. _header-n343 :
846882
847883Book: Practical Computer Vision Applications Using Deep Learning with CNNs
848884--------------------------------------------------------------------------
@@ -868,7 +904,7 @@ Find the book at these links:
868904.. figure :: https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
869905 :alt:
870906
871- .. _header-n700 :
907+ .. _header-n358 :
872908
873909Contact Us
874910==========
@@ -889,6 +925,9 @@ Contact Us
889925
890926- `GitHub <https://github.com/ahmedfgad >`__
891927
928+ .. figure :: https://user-images.githubusercontent.com/16560492/101267295-c74c0180-375f-11eb-9ad0-f8e37bd796ce.png
929+ :alt:
930+
892931.. |image0 | image :: https://user-images.githubusercontent.com/16560492/78830052-a3c19300-79e7-11ea-8b9b-4b343ea4049c.png
893932 :target: https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad
894933.. |image1 | image :: https://user-images.githubusercontent.com/16560492/82078259-26252d00-96e1-11ea-9a02-52a99e1054b9.jpg
0 commit comments