1- .. _header-n298 :
1+ .. _header-n0 :
22
33Release History
44===============
55
6- .. _header-n300 :
6+ .. _header-n2 :
77
88PyGAD 1.0.17
99------------
@@ -15,7 +15,7 @@ Release Date: 15 April 2020
1515 values for the solutions. This allows the project to be customized to
1616 any problem by building the right fitness function.
1717
18- .. _header-n305 :
18+ .. _header-n7 :
1919
2020PyGAD 1.0.20
2121-------------
@@ -35,7 +35,7 @@ Release Date: 4 May 2020
35354. The code object ``__code__ `` of the passed fitness function is
3636 checked to ensure it has the right number of parameters.
3737
38- .. _header-n316 :
38+ .. _header-n18 :
3939
4040PyGAD 2.0.0
4141------------
@@ -61,7 +61,7 @@ Release Date: 13 May 2020
6161 is called after each generation. This helps the user to do
6262 post-processing or debugging operations after each generation.
6363
64- .. _header-n327 :
64+ .. _header-n29 :
6565
6666PyGAD 2.1.0
6767-----------
@@ -97,7 +97,7 @@ Release Date: 14 May 2020
9797
98982. Mutation is applied independently for the genes.
9999
100- .. _header-n342 :
100+ .. _header-n44 :
101101
102102PyGAD 2.2.1
103103-----------
@@ -107,7 +107,7 @@ Release Date: 17 May 2020
1071071. Adding 2 extra modules (pygad.nn and pygad.gann) for building and
108108 training neural networks with the genetic algorithm.
109109
110- .. _header-n347 :
110+ .. _header-n49 :
111111
112112PyGAD 2.2.2
113113-----------
@@ -141,7 +141,7 @@ The new gene value is **0.1**.
141141 ``crossover_type `` parameters of the pygad.GA class constructor. When
142142 ``None ``, this means the step is bypassed and has no action.
143143
144- .. _header-n360 :
144+ .. _header-n62 :
145145
146146PyGAD 2.3.0
147147-----------
@@ -166,7 +166,7 @@ Release date: 1 June 2020
1661666. The name of the ``pygad.nn.train_network() `` function is changed to
167167 ``pygad.nn.train() ``.
168168
169- .. _header-n375 :
169+ .. _header-n77 :
170170
171171PyGAD 2.4.0
172172-----------
@@ -204,7 +204,7 @@ through more generations because no further improvement is possible.
204204 if ga_instance.best_solution()[1 ] >= 70 :
205205 return " stop"
206206
207- .. _header-n385 :
207+ .. _header-n87 :
208208
209209PyGAD 2.5.0
210210-----------
@@ -300,7 +300,7 @@ If the user did not assign the initial population to the
300300randomly based on the ``gene_space `` parameter. Moreover, the mutation
301301is applied based on this parameter.
302302
303- .. _header-n413 :
303+ .. _header-n115 :
304304
305305PyGAD 2.6.0
306306------------
@@ -318,7 +318,7 @@ Release Date: 6 August 2020
318318 ``on_fitness ``, ``on_parents ``, ``on_crossover ``, ``on_mutation ``,
319319 ``on_generation ``, and ``on_stop ``.
320320
321- .. _header-n422 :
321+ .. _header-n124 :
322322
323323PyGAD 2.7.0
324324-----------
@@ -377,7 +377,7 @@ parameter or set it to ``"classification"`` (default value). In this
377377case, the activation function of the last layer can be set to any type
378378(e.g. softmax).
379379
380- .. _header-n446 :
380+ .. _header-n148 :
381381
382382PyGAD 2.7.1
383383-----------
@@ -387,7 +387,7 @@ Release Date: 11 September 2020
3873871. A bug fix when the ``problem_type `` argument is set to
388388 ``regression ``.
389389
390- .. _header-n451 :
390+ .. _header-n153 :
391391
392392PyGAD 2.7.2
393393-----------
@@ -397,7 +397,7 @@ Release Date: 14 September 2020
3973971. Bug fix to support building and training regression neural networks
398398 with multiple outputs.
399399
400- .. _header-n456 :
400+ .. _header-n158 :
401401
402402PyGAD 2.8.0
403403-----------
@@ -407,7 +407,7 @@ Release Date: 20 September 2020
4074071. Support of a new module named ``kerasga `` so that the Keras models
408408 can be trained by the genetic algorithm using PyGAD.
409409
410- .. _header-n597 :
410+ .. _header-n163 :
411411
412412PyGAD 2.8.1
413413-----------
@@ -420,7 +420,35 @@ Release Date: 3 October 2020
420420 Management, Faculty of Engineering, Alexandria University,
421421 Egypt <https://www.linkedin.com/in/hamadakassem> `__.
422422
423- .. _header-n596 :
423+ .. _header-n168 :
424+
425+ PyGAD 2.9.0
426+ ------------
427+
428+ Release Date: 06 December 2020
429+
430+ 1. The fitness values of the initial population are considered in the
431+ ``best_solutions_fitness `` attribute.
432+
433+ 2. An optional parameter named ``save_best_solutions `` is added. It
434+ defaults to ``False ``. When it is ``True ``, then the best solution
435+ after each generation is saved into an attribute named
436+ ``best_solutions ``. If ``False ``, then no solutions are saved and the
437+ ``best_solutions `` attribute will be empty.
438+
439+ 3. Scattered crossover is supported. To use it, assign the
440+ ``crossover_type `` parameter the value ``"scattered" ``.
441+
442+ 4. NumPy arrays are now supported by the ``gene_space `` parameter.
443+
444+ 5. The following parameters (``gene_type ``, ``crossover_probability ``,
445+ ``mutation_probability ``, ``delay_after_gen ``) can be assigned to a
446+ numeric value of any of these data types: ``int ``, ``float ``,
447+ ``numpy.int ``, ``numpy.int8 ``, ``numpy.int16 ``, ``numpy.int32 ``,
448+ ``numpy.int64 ``, ``numpy.float ``, ``numpy.float16 ``,
449+ ``numpy.float32 ``, or ``numpy.float64 ``.
450+
451+ .. _header-n303 :
424452
425453PyGAD Projects at GitHub
426454========================
@@ -430,7 +458,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
430458open-source GitHub projects. A brief note about these projects is given
431459in the next subsections.
432460
433- .. _header-n463 :
461+ .. _header-n170 :
434462
435463`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
436464--------------------------------------------------------------------------------
@@ -441,7 +469,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
441469is the first project which is an open-source Python 3 project for
442470implementing the genetic algorithm based on NumPy.
443471
444- .. _header-n466 :
472+ .. _header-n173 :
445473
446474`NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__
447475----------------------------------------------------
@@ -455,7 +483,7 @@ neural network without using a training algorithm. Currently, it only
455483supports classification and later regression will be also supported.
456484Moreover, only one class is supported per sample.
457485
458- .. _header-n469 :
486+ .. _header-n176 :
459487
460488`NeuralGenetic <https://github.com/ahmedfgad/NeuralGenetic >`__
461489--------------------------------------------------------------
@@ -468,7 +496,7 @@ projects
468496`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
469497and `NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__.
470498
471- .. _header-n472 :
499+ .. _header-n179 :
472500
473501`NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__
474502----------------------------------------------------
@@ -480,7 +508,7 @@ convolutional neural networks using NumPy. The purpose of this project
480508is to only implement the **forward pass ** of a convolutional neural
481509network without using a training algorithm.
482510
483- .. _header-n475 :
511+ .. _header-n182 :
484512
485513`CNNGenetic <https://github.com/ahmedfgad/CNNGenetic >`__
486514--------------------------------------------------------
@@ -492,7 +520,19 @@ convolutional neural networks using the genetic algorithm. It uses the
492520`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
493521project for building the genetic algorithm.
494522
495- .. _header-n478 :
523+ .. _header-n325 :
524+
525+ `KerasGA <https://github.com/ahmedfgad/KerasGA >`__
526+ --------------------------------------------------
527+
528+ GitHub Link: https://github.com/ahmedfgad/KerasGA
529+
530+ `KerasGA <https://github.com/ahmedfgad/KerasGA >`__ trains Keras models
531+ using the genetic algorithm. It uses the
532+ `GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
533+ project for building the genetic algorithm.
534+
535+ .. _header-n185 :
496536
497537Submitting Issues
498538=================
@@ -509,7 +549,7 @@ is not working properly or to ask for questions.
509549If this is not a proper option for you, then check the **Contact Us **
510550section for more contact details.
511551
512- .. _header-n482 :
552+ .. _header-n189 :
513553
514554Ask for Feature
515555===============
@@ -526,7 +566,7 @@ to ahmed.f.gad@gmail.com.
526566
527567Also check the **Contact Us ** section for more contact details.
528568
529- .. _header-n486 :
569+ .. _header-n193 :
530570
531571Projects Built using PyGAD
532572==========================
@@ -545,15 +585,15 @@ Within your message, please send the following details:
545585
546586- Preferably, a link that directs the readers to your project
547587
548- .. _header-n497 :
588+ .. _header-n204 :
549589
550590For More Information
551591====================
552592
553593There are different resources that can be used to get started with the
554594genetic algorithm and building it in Python.
555595
556- .. _header-n499 :
596+ .. _header-n206 :
557597
558598Tutorial: Implementing Genetic Algorithm in Python
559599--------------------------------------------------
@@ -577,7 +617,7 @@ good resource to start with coding the genetic algorithm.
577617
578618|image0 |
579619
580- .. _header-n510 :
620+ .. _header-n217 :
581621
582622Tutorial: Introduction to Genetic Algorithm
583623-------------------------------------------
@@ -596,7 +636,7 @@ which is available at these links:
596636
597637|image1 |
598638
599- .. _header-n520 :
639+ .. _header-n227 :
600640
601641Tutorial: Build Neural Networks in Python
602642-----------------------------------------
@@ -616,7 +656,7 @@ available at these links:
616656
617657|image2 |
618658
619- .. _header-n530 :
659+ .. _header-n237 :
620660
621661Tutorial: Optimize Neural Networks with Genetic Algorithm
622662---------------------------------------------------------
@@ -636,7 +676,7 @@ available at these links:
636676
637677|image3 |
638678
639- .. _header-n540 :
679+ .. _header-n247 :
640680
641681Tutorial: Building CNN in Python
642682--------------------------------
@@ -662,7 +702,7 @@ good resource to start with coding CNNs.
662702
663703|image4 |
664704
665- .. _header-n553 :
705+ .. _header-n260 :
666706
667707Tutorial: Derivation of CNN from FCNN
668708-------------------------------------
@@ -681,7 +721,7 @@ which is available at these links:
681721
682722|image5 |
683723
684- .. _header-n563 :
724+ .. _header-n270 :
685725
686726Book: Practical Computer Vision Applications Using Deep Learning with CNNs
687727--------------------------------------------------------------------------
@@ -707,7 +747,7 @@ Find the book at these links:
707747.. figure :: https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
708748 :alt:
709749
710- .. _header-n578 :
750+ .. _header-n285 :
711751
712752Contact Us
713753==========
0 commit comments