|
| 1 | +{-# OPTIONS --cubical-compatible --safe #-} |
| 2 | + |
| 3 | +open import Algebra using (Monoid) |
| 4 | + |
| 5 | +module Algebra.Reasoning.Monoid {o ℓ} (M : Monoid o ℓ) where |
| 6 | + |
| 7 | +open Monoid M |
| 8 | +open import Relation.Binary.Reasoning.Setoid setoid |
| 9 | +open import Algebra.Reasoning.SemiGroup semigroup public |
| 10 | + |
| 11 | + |
| 12 | +module Identity {a : Carrier } where |
| 13 | + id-unique : (∀ b → b ∙ a ≈ b) → a ≈ ε |
| 14 | + id-unique b∙a≈b = begin |
| 15 | + a ≈⟨ sym (identityˡ a) ⟩ |
| 16 | + ε ∙ a ≈⟨ b∙a≈b ε ⟩ |
| 17 | + ε ∎ |
| 18 | + |
| 19 | + id-comm : a ∙ ε ≈ ε ∙ a |
| 20 | + id-comm = begin |
| 21 | + a ∙ ε ≈⟨ identityʳ a ⟩ |
| 22 | + a ≈⟨ sym (identityˡ a)⟩ |
| 23 | + ε ∙ a ∎ |
| 24 | + |
| 25 | + id-comm-sym : ε ∙ a ≈ a ∙ ε |
| 26 | + id-comm-sym = sym id-comm |
| 27 | + |
| 28 | +open Identity public |
| 29 | + |
| 30 | +module IntroElim {a b : Carrier} (a≈ε : a ≈ ε) where |
| 31 | + elimʳ : b ∙ a ≈ b |
| 32 | + elimʳ = begin |
| 33 | + b ∙ a ≈⟨ ∙-cong refl a≈ε ⟩ |
| 34 | + b ∙ ε ≈⟨ identityʳ b ⟩ |
| 35 | + b ∎ |
| 36 | + |
| 37 | + elimˡ : a ∙ b ≈ b |
| 38 | + elimˡ = begin |
| 39 | + a ∙ b ≈⟨ ∙-cong a≈ε refl ⟩ |
| 40 | + ε ∙ b ≈⟨ identityˡ b ⟩ |
| 41 | + b ∎ |
| 42 | + |
| 43 | + introʳ : a ≈ ε → b ≈ b ∙ a |
| 44 | + introʳ a≈ε = sym elimʳ |
| 45 | + |
| 46 | + introˡ : a ≈ ε → b ≈ a ∙ b |
| 47 | + introˡ a≈ε = sym elimˡ |
| 48 | + |
| 49 | + introcenter : ∀ c → b ∙ c ≈ b ∙ (a ∙ c) |
| 50 | + introcenter c = begin |
| 51 | + b ∙ c ≈⟨ sym (∙-cong refl (identityˡ c)) ⟩ |
| 52 | + b ∙ (ε ∙ c) ≈⟨ sym (∙-cong refl (∙-cong a≈ε refl)) ⟩ |
| 53 | + b ∙ (a ∙ c) ∎ |
| 54 | + |
| 55 | +open IntroElim public |
| 56 | + |
| 57 | +module Cancellers {a b c : Carrier} (inv : a ∙ c ≈ ε) where |
| 58 | + |
| 59 | + cancelʳ : (b ∙ a) ∙ c ≈ b |
| 60 | + cancelʳ = begin |
| 61 | + (b ∙ a) ∙ c ≈⟨ assoc b a c ⟩ |
| 62 | + b ∙ (a ∙ c) ≈⟨ ∙-cong refl inv ⟩ |
| 63 | + b ∙ ε ≈⟨ identityʳ b ⟩ |
| 64 | + b ∎ |
| 65 | + |
| 66 | + |
| 67 | + cancelˡ : a ∙ (c ∙ b) ≈ b |
| 68 | + cancelˡ = begin |
| 69 | + a ∙ (c ∙ b) ≈⟨ sym (assoc a c b) ⟩ |
| 70 | + (a ∙ c) ∙ b ≈⟨ ∙-cong inv refl ⟩ |
| 71 | + ε ∙ b ≈⟨ identityˡ b ⟩ |
| 72 | + b ∎ |
| 73 | + |
| 74 | + insertˡ : b ≈ a ∙ (c ∙ b) |
| 75 | + insertˡ = sym cancelˡ |
| 76 | + |
| 77 | + insertʳ : b ≈ (b ∙ a) ∙ c |
| 78 | + insertʳ = sym cancelʳ |
| 79 | + |
| 80 | + cancelInner : ∀ {g} → (b ∙ a) ∙ (c ∙ g) ≈ b ∙ g |
| 81 | + cancelInner {g = g} = begin |
| 82 | + (b ∙ a) ∙ (c ∙ g) ≈⟨ sym (assoc (b ∙ a) c g) ⟩ |
| 83 | + ((b ∙ a) ∙ c) ∙ g ≈⟨ ∙-cong cancelʳ refl ⟩ |
| 84 | + b ∙ g ∎ |
| 85 | + |
| 86 | + insertInner : ∀ {g} → b ∙ g ≈ (b ∙ a) ∙ (c ∙ g) |
| 87 | + insertInner = sym cancelInner |
0 commit comments