@@ -29,31 +29,26 @@ open NormalSubgroup N
2929infix 0 _by_
3030
3131data _≋_ (x y : Carrier) : Set (c ⊔ ℓ ⊔ c′) where
32- _by_ : ∀ g → x // y ≈ ι g → x ≋ y
32+ _by_ : ∀ g → ι g ∙ x ≈ y → x ≋ y
3333
3434≋-refl : Reflexive _≋_
35- ≋-refl {x} = N.ε by begin
36- x // x ≈⟨ inverseʳ x ⟩
37- ε ≈⟨ ι.ε-homo ⟨
38- ι N.ε ∎
35+ ≋-refl {x} = N.ε by trans (∙-congʳ ι.ε-homo) (identityˡ x)
3936
4037≋-sym : Symmetric _≋_
41- ≋-sym {x} {y} (g by x//y≈ιg ) = g N.⁻¹ by begin
42- y // x ≈⟨ ⁻¹-anti- homo-// x y ⟨
43- (x // y) ⁻¹ ≈⟨ ⁻¹-cong x//y≈ιg ⟩
44- ι g ⁻¹ ≈⟨ ι.⁻¹-homo g ⟨
45- ι (g N.⁻¹) ∎
46-
38+ ≋-sym {x} {y} (g by ιg∙x≈y ) = g N.⁻¹ by begin
39+ ι (g N.⁻¹) ∙ y ≈⟨ ∙-cong (ι. ⁻¹-homo g) (sym ιg∙x≈y) ⟩
40+ ι g ⁻¹ ∙ (ι g ∙ x) ≈⟨ assoc (ι g ⁻¹) (ι g) x ⟨
41+ ( ι g ⁻¹ ∙ ι g) ∙ x ≈⟨ ∙-congʳ (inverseˡ (ι g)) ⟩
42+ ε ∙ x ≈⟨ identityˡ x ⟩
43+ x ∎
4744
4845≋-trans : Transitive _≋_
49- ≋-trans {x} {y} {z} (g by x//y≈ιg) (h by y//z≈ιh) = g N.∙ h by begin
50- x // z ≈⟨ ∙-congʳ (identityʳ x) ⟨
51- x ∙ ε // z ≈⟨ ∙-congʳ (∙-congˡ (inverseˡ y)) ⟨
52- x ∙ (y \\ y) // z ≈⟨ ∙-congʳ (assoc x (y ⁻¹) y) ⟨
53- (x // y) ∙ y // z ≈⟨ assoc (x // y) y (z ⁻¹) ⟩
54- (x // y) ∙ (y // z) ≈⟨ ∙-cong x//y≈ιg y//z≈ιh ⟩
55- ι g ∙ ι h ≈⟨ ι.∙-homo g h ⟨
56- ι (g N.∙ h) ∎
46+ ≋-trans {x} {y} {z} (g by ιg∙x) (h by ιh∙y) = h N.∙ g by begin
47+ ι (h N.∙ g) ∙ x ≈⟨ ∙-congʳ (ι.∙-homo h g) ⟩
48+ (ι h ∙ ι g) ∙ x ≈⟨ assoc (ι h) (ι g) x ⟩
49+ ι h ∙ (ι g ∙ x) ≈⟨ ∙-congˡ ιg∙x ⟩
50+ ι h ∙ y ≈⟨ ιh∙y ⟩
51+ z ∎
5752
5853≋-isEquivalence : IsEquivalence _≋_
5954≋-isEquivalence = record
@@ -63,38 +58,39 @@ data _≋_ (x y : Carrier) : Set (c ⊔ ℓ ⊔ c′) where
6358 }
6459
6560≈⇒≋ : _≈_ ⇒ _≋_
66- ≈⇒≋ {x} {y} x≈y = N.ε by begin
67- x // y ≈⟨ x≈y⇒x∙y⁻¹≈ε x≈y ⟩
68- ε ≈⟨ ι.ε-homo ⟨
69- ι N.ε ∎
61+ ≈⇒≋ {x} {y} x≈y = N.ε by trans (∙-cong ι.ε-homo x≈y) (identityˡ y)
7062
7163open AlgDefs _≋_
7264
7365≋-∙-cong : Congruent₂ _∙_
74- ≋-∙-cong {x} {y} {u} {v} (g by x//y≈ιg) (h by u//v≈ιh) = g N.∙ normal h y .proj₁ by begin
75- x ∙ u // y ∙ v ≈⟨ ∙-congˡ (⁻¹-anti-homo-∙ y v) ⟩
76- x ∙ u ∙ (v ⁻¹ ∙ y ⁻¹) ≈⟨ assoc (x ∙ u) (v ⁻¹) (y ⁻¹) ⟨
77- (x ∙ u // v) // y ≈⟨ ∙-congʳ (assoc x u (v ⁻¹)) ⟩
78- x ∙ (u // v) // y ≈⟨ ∙-congʳ (∙-congˡ u//v≈ιh) ⟩
79- x ∙ ι h // y ≈⟨ ∙-congʳ (∙-congˡ (identityˡ (ι h))) ⟨
80- x ∙ (ε ∙ ι h) // y ≈⟨ ∙-congʳ (∙-congˡ (∙-congʳ (inverseˡ y))) ⟨
81- x ∙ ((y \\ y) ∙ ι h) // y ≈⟨ ∙-congʳ (∙-congˡ (assoc (y ⁻¹) y (ι h))) ⟩
82- x ∙ (y \\ y ∙ ι h) // y ≈⟨ ∙-congʳ (assoc x (y ⁻¹) (y ∙ ι h)) ⟨
83- (x // y) ∙ (y ∙ ι h) // y ≈⟨ assoc (x // y) (y ∙ ι h) (y ⁻¹) ⟩
84- (x // y) ∙ (y ∙ ι h // y) ≈⟨ ∙-cong x//y≈ιg (proj₂ (normal h y)) ⟩
85- ι g ∙ ι (normal h y .proj₁) ≈⟨ ι.∙-homo g (normal h y .proj₁) ⟨
86- ι (g N.∙ normal h y .proj₁) ∎
66+ ≋-∙-cong {x} {y} {u} {v} (g by ιg∙x≈y) (h by ιh∙u≈v) = g N.∙ h′ by begin
67+ ι (g N.∙ h′) ∙ (x ∙ u) ≈⟨ ∙-congʳ (ι.∙-homo g h′) ⟩
68+ (ι g ∙ ι h′) ∙ (x ∙ u) ≈⟨ assoc (ι g) (ι h′) (x ∙ u) ⟩
69+ ι g ∙ (ι h′ ∙ (x ∙ u)) ≈⟨ ∙-congˡ (assoc (ι h′) x u) ⟨
70+ ι g ∙ ((ι h′ ∙ x) ∙ u) ≈⟨ ∙-congˡ (∙-congʳ x∙ιh≈ιh′∙x) ⟨
71+ ι g ∙ ((x ∙ ι h) ∙ u) ≈⟨ ∙-congˡ (assoc x (ι h) u) ⟩
72+ ι g ∙ (x ∙ (ι h ∙ u)) ≈⟨ assoc (ι g) x (ι h ∙ u) ⟨
73+ (ι g ∙ x) ∙ (ι h ∙ u) ≈⟨ ∙-cong ιg∙x≈y ιh∙u≈v ⟩
74+ y ∙ v ∎
75+ where
76+ h′ : N.Carrier
77+ h′ = normal h x .proj₁
78+ x∙ιh≈ιh′∙x : x ∙ ι h ≈ ι h′ ∙ x
79+ x∙ιh≈ιh′∙x = normal h x .proj₂
80+
8781
8882≋-⁻¹-cong : Congruent₁ _⁻¹
89- ≋-⁻¹-cong {x} {y} (g by x//y≈ιg) = normal (g N.⁻¹) (y ⁻¹) .proj₁ by begin
90- x ⁻¹ ∙ y ⁻¹ ⁻¹ ≈⟨ ∙-congʳ (identityˡ (x ⁻¹)) ⟨
91- (ε ∙ x ⁻¹) ∙ y ⁻¹ ⁻¹ ≈⟨ ∙-congʳ (∙-congʳ (inverseʳ (y ⁻¹))) ⟨
92- ((y ⁻¹ ∙ y ⁻¹ ⁻¹) ∙ x ⁻¹) ∙ y ⁻¹ ⁻¹ ≈⟨ ∙-congʳ (assoc (y ⁻¹) ((y ⁻¹) ⁻¹) (x ⁻¹)) ⟩
93- y ⁻¹ ∙ (y ⁻¹ ⁻¹ ∙ x ⁻¹) ∙ y ⁻¹ ⁻¹ ≈⟨ ∙-congʳ (∙-congˡ (⁻¹-anti-homo-∙ x (y ⁻¹))) ⟨
94- y ⁻¹ ∙ (x ∙ y ⁻¹) ⁻¹ ∙ y ⁻¹ ⁻¹ ≈⟨ ∙-congʳ (∙-congˡ (⁻¹-cong x//y≈ιg)) ⟩
95- y ⁻¹ ∙ ι g ⁻¹ ∙ y ⁻¹ ⁻¹ ≈⟨ ∙-congʳ (∙-congˡ (ι.⁻¹-homo g)) ⟨
96- y ⁻¹ ∙ ι (g N.⁻¹) ∙ y ⁻¹ ⁻¹ ≈⟨ proj₂ (normal (g N.⁻¹) (y ⁻¹)) ⟩
97- ι (normal (g N.⁻¹) (y ⁻¹) .proj₁) ∎
83+ ≋-⁻¹-cong {x} {y} (g by ιg∙x≈y) = g′ by begin
84+ ι g′ ∙ x ⁻¹ ≈⟨ x⁻¹∙ιg⁻¹≈ιg′∙x⁻¹ ⟨
85+ x ⁻¹ ∙ ι (g N.⁻¹) ≈⟨ ∙-congˡ (ι.⁻¹-homo g) ⟩
86+ x ⁻¹ ∙ ι g ⁻¹ ≈⟨ ⁻¹-anti-homo-∙ (ι g) x ⟨
87+ (ι g ∙ x) ⁻¹ ≈⟨ ⁻¹-cong ιg∙x≈y ⟩
88+ y ⁻¹ ∎
89+ where
90+ g′ : N.Carrier
91+ g′ = normal (g N.⁻¹) (x ⁻¹) .proj₁
92+ x⁻¹∙ιg⁻¹≈ιg′∙x⁻¹ : x ⁻¹ ∙ ι (g N.⁻¹) ≈ ι g′ ∙ x ⁻¹
93+ x⁻¹∙ιg⁻¹≈ιg′∙x⁻¹ = normal (g N.⁻¹) (x ⁻¹) .proj₂
9894
9995quotientIsGroup : IsGroup _≋_ _∙_ ε _⁻¹
10096quotientIsGroup = record
0 commit comments