1212module Data.Nat.ListAction.Properties where
1313
1414open import Algebra.Bundles using (CommutativeMonoid)
15- open import Data.List.Base using (List; []; _∷_; _++_)
15+ open import Data.List.Base using (List; []; _∷_; _++_; map )
1616open import Data.List.Membership.Propositional using (_∈_)
1717open import Data.List.Relation.Binary.Permutation.Propositional
1818 using (_↭_; ↭⇒↭ₛ)
1919open import Data.List.Relation.Binary.Permutation.Setoid.Properties
2020 using (foldr-commMonoid)
2121open import Data.List.Relation.Unary.All using (All; []; _∷_)
2222open import Data.List.Relation.Unary.Any using (here; there)
23- open import Data.Nat.Base using (ℕ; _+_; _*_; NonZero; _≤_)
23+ open import Data.Nat.Base using (ℕ; _+_; _*_; _^_; NonZero; _≤_)
2424open import Data.Nat.Divisibility using (_∣_; m∣m*n; ∣n⇒∣m*n)
2525open import Data.Nat.ListAction using (sum; product)
2626open import Data.Nat.Properties
2727 using (+-assoc; *-assoc; *-identityˡ; m*n≢0; m≤m*n; m≤n⇒m≤o*n
28- ; +-0-commutativeMonoid; *-1-commutativeMonoid)
28+ ; +-0-commutativeMonoid; *-1-commutativeMonoid
29+ ; *-zeroˡ; *-zeroʳ; *-distribˡ-+; *-distribʳ-+
30+ ; ^-zeroˡ; ^-distribʳ-*)
2931open import Relation.Binary.Core using (_Preserves_⟶_)
3032open import Relation.Binary.PropositionalEquality.Core
31- using (_≡_; refl; sym; cong)
33+ using (_≡_; refl; sym; trans; cong)
3234open import Relation.Binary.PropositionalEquality.Properties
3335 using (module ≡-Reasoning )
3436
@@ -51,6 +53,14 @@ sum-++ (m ∷ ms) ns = begin
5153 (m + sum ms) + sum ns ∎
5254 where open ≡-Reasoning
5355
56+ *-distribˡ-sum : ∀ m ns → m * sum ns ≡ sum (map (m *_) ns)
57+ *-distribˡ-sum m [] = *-zeroʳ m
58+ *-distribˡ-sum m (n ∷ ns) = trans (*-distribˡ-+ m n (sum ns)) (cong (m * n +_) (*-distribˡ-sum m ns))
59+
60+ *-distribʳ-sum : ∀ m ns → sum ns * m ≡ sum (map (_* m) ns)
61+ *-distribʳ-sum m [] = *-zeroˡ m
62+ *-distribʳ-sum m (n ∷ ns) = trans (*-distribʳ-+ m n (sum ns)) (cong (n * m +_) (*-distribʳ-sum m ns))
63+
5464sum-↭ : sum Preserves _↭_ ⟶ _≡_
5565sum-↭ p = foldr-commMonoid ℕ-+-0.setoid ℕ-+-0.isCommutativeMonoid (↭⇒↭ₛ p)
5666 where module ℕ-+-0 = CommutativeMonoid +-0-commutativeMonoid
@@ -78,6 +88,10 @@ product≢0 (n≢0 ∷ ns≢0) = m*n≢0 _ _ {{n≢0}} {{product≢0 ns≢0}}
7888∈⇒≤product (n≢0 ∷ ns≢0) (here refl) = m≤m*n _ _ {{product≢0 ns≢0}}
7989∈⇒≤product (n≢0 ∷ ns≢0) (there n∈ns) = m≤n⇒m≤o*n _ {{n≢0}} (∈⇒≤product ns≢0 n∈ns)
8090
91+ ^-distribʳ-product : ∀ m ns → product ns ^ m ≡ product (map (_^ m) ns)
92+ ^-distribʳ-product m [] = ^-zeroˡ m
93+ ^-distribʳ-product m (n ∷ ns) = trans (^-distribʳ-* m n (product ns)) (cong (n ^ m *_) (^-distribʳ-product m ns))
94+
8195product-↭ : product Preserves _↭_ ⟶ _≡_
8296product-↭ p = foldr-commMonoid ℕ-*-1.setoid ℕ-*-1.isCommutativeMonoid (↭⇒↭ₛ p)
8397 where module ℕ-*-1 = CommutativeMonoid *-1-commutativeMonoid
0 commit comments