@@ -19,7 +19,7 @@ open import Algebra.Bundles
1919open import Algebra.Bundles.Raw
2020 using (RawMagma)
2121open import Algebra.Core using (Op₂)
22- open import Algebra.Definitions using (Congruent₂)
22+ open import Algebra.Definitions using (Congruent₂; Associative; Idempotent )
2323open import Algebra.Structures using (IsMagma; IsSemigroup; IsBand)
2424open import Data.Empty.Polymorphic using (⊥)
2525open import Relation.Binary.Core using (Rel)
@@ -63,6 +63,12 @@ module ℤero where
6363 ∙-cong : Congruent₂ _≈_ _∙_
6464 ∙-cong {x = ()}
6565
66+ assoc : Associative _≈_ _∙_
67+ assoc ()
68+
69+ idem : Idempotent _≈_ _∙_
70+ idem ()
71+
6672open ℤero
6773
6874------------------------------------------------------------------------
@@ -75,16 +81,16 @@ rawMagma = record { ℤero }
7581-- Structures
7682
7783isEquivalence : IsEquivalence _≈_
78- isEquivalence = record { refl = refl; sym = sym; trans = λ {k = k} → trans {k = k } }
84+ isEquivalence = record { refl = refl; sym = sym; trans = λ where {i = () } }
7985
8086isMagma : IsMagma _≈_ _∙_
81- isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ {y = y} {u = u} {v = v} → ∙-cong {y = y} {v = v } }
87+ isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ where {x = () } }
8288
8389isSemigroup : IsSemigroup _≈_ _∙_
84- isSemigroup = record { isMagma = isMagma ; assoc = λ () }
90+ isSemigroup = record { isMagma = isMagma ; assoc = assoc }
8591
8692isBand : IsBand _≈_ _∙_
87- isBand = record { isSemigroup = isSemigroup ; idem = λ () }
93+ isBand = record { isSemigroup = isSemigroup ; idem = idem }
8894
8995------------------------------------------------------------------------
9096-- Bundles
0 commit comments