44-- Defintions for domain theory
55------------------------------------------------------------------------
66
7+ {-# OPTIONS --cubical-compatible --safe #-}
8+
79module Relation.Binary.Properties.Domain where
810
911open import Relation.Binary.Bundles using (Poset)
@@ -21,7 +23,7 @@ private variable
2123 c ℓ₁ ℓ₂ o ℓ : Level
2224 Ix A B : Set o
2325
24- module _ {c ℓ₁ ℓ₂} {P : Poset c ℓ₁ ℓ₂} {D : DCPO P c ℓ₁ ℓ₂ } where
26+ module _ {c ℓ₁ ℓ₂} {P : Poset c ℓ₁ ℓ₂} {D : DCPO c ℓ₁ ℓ₂ } where
2527 private
2628 module D = DCPO D
2729
@@ -118,7 +120,7 @@ module _ where
118120 module f = IsScottContinuous scottf
119121 module g = IsScottContinuous scottg
120122
121- module _ {c ℓ₁ ℓ₂} {P : Poset c ℓ₁ ℓ₂} (D : DCPO P c ℓ₁ ℓ₂) where
123+ module _ {c ℓ₁ ℓ₂} {P : Poset c ℓ₁ ℓ₂} (D : DCPO c ℓ₁ ℓ₂) where
122124 private
123125 module D = DCPO D
124126
@@ -134,7 +136,7 @@ module _ {c ℓ₁ ℓ₂} {P : Poset c ℓ₁ ℓ₂} (D : DCPO P c ℓ₁ ℓ
134136module Scott
135137 {c ℓ₁ ℓ₂}
136138 {P : Poset c ℓ₁ ℓ₂}
137- {D E : DCPO P c ℓ₁ ℓ₂}
139+ {D E : DCPO c ℓ₁ ℓ₂}
138140 (let module D = DCPO D)
139141 (let module E = DCPO E)
140142 (f : D.Carrier → E.Carrier)
@@ -159,7 +161,7 @@ module Scott
159161 (λ i → IsOrderHomomorphism.mono mono (D.⋁-≤ i))
160162 )
161163
162- module _ {c ℓ₁ ℓ₂} {P : Poset c ℓ₁ ℓ₂} {D E : DCPO P c ℓ₁ ℓ₂} where
164+ module _ {c ℓ₁ ℓ₂} {P : Poset c ℓ₁ ℓ₂} {D E : DCPO c ℓ₁ ℓ₂} where
163165 private
164166 module D = DCPO D
165167 module E = DCPO E
@@ -169,8 +171,7 @@ module _ {c ℓ₁ ℓ₂} {P : Poset c ℓ₁ ℓ₂} {D E : DCPO P c ℓ₁
169171 → IsLub E.poset (f ∘ s) (f (D.⋁ s dir)))
170172 → IsScottContinuous {P = D.poset} {Q = E.poset} f
171173 to-scott f mono pres-⋁ = record
172- { PreserveLub = λ dir lub x → is-lub-cong {D = E} (f (D.⋁ _ dir)) (f lub)
173- (IsOrderHomomorphism.cong mono (uniqueLub {D = D} (D.⋁ _ dir) lub (D.⋁-isLub _ dir) x))
174+ { PreserveLub = λ dir lub x → is-lub-cong {P = E.poset} { D = E} (f (D.⋁ _ dir)) (f lub)
175+ (IsOrderHomomorphism.cong mono (uniqueLub {P = E.poset} { D = D} (D.⋁ _ dir) lub (D.⋁-isLub _ dir) x))
174176 (pres-⋁ _ dir)
175177 ; PreserveEquality = IsOrderHomomorphism.cong mono }
176-
0 commit comments