diff --git a/book/chapters/01 Numeric Structures/04 Functions/05 - Set-valued functions.qmd b/book/chapters/01 Numeric Structures/04 Functions/05 - Set-valued functions.qmd index e69de29..802eb56 100644 --- a/book/chapters/01 Numeric Structures/04 Functions/05 - Set-valued functions.qmd +++ b/book/chapters/01 Numeric Structures/04 Functions/05 - Set-valued functions.qmd @@ -0,0 +1,142 @@ +\documentclass[12pt]{article} +\usepackage{amsmath, amssymb} +\usepackage{geometry} +\usepackage{tcolorbox} +\usepackage{setspace} +\usepackage{hyperref} +\geometry{margin=1in} +\setstretch{1.3} +\hypersetup{ + colorlinks=true, + linkcolor=blue, + urlcolor=cyan +} + +\title{Functions: Set-Valued Functions} +\author{} +\date{} + +\begin{document} + +\maketitle + +Set-valued functions stretch the classical idea of a function. No longer must every input yield a unique output — instead, each input can yield an entire *set* of outputs. These functions embrace ambiguity, multitudes, and nondeterminism. + +--- + +\section*{1. What is a Set-Valued Function?} + +A set-valued function (also called a \textbf{multifunction}) is a rule that assigns to every element $x \in X$ a subset $F(x) \subseteq Y$. That is: + +\[ +F: X \to \mathcal{P}(Y), \quad \text{where } \mathcal{P}(Y) \text{ is the power set of } Y +\] + +This means each $x$ is mapped not to a single point, but to a \textit{set} of possible outcomes. + +\begin{tcolorbox}[colback=yellow!5!white, colframe=yellow!70!black, title=Example] +Let $F(x) = \{ y \in \mathbb{R} \mid y^2 = x \}$.\\ +Then: \\ +$F(4) = \{-2, 2\}, \quad F(0) = \{0\}, \quad F(-1) = \emptyset$ +\end{tcolorbox} + +\noindent This function is not defined for $x < 0$, since no real number squared equals a negative. + +--- + +\section*{2. Domain and Values} + +\begin{itemize} + \item \textbf{Domain:} Set of all $x \in X$ such that $F(x) \ne \emptyset$ + \item \textbf{Value:} The output $F(x)$ is a subset of $Y$ + \item \textbf{Graph:} The graph of $F$ is the set: + \[ + \text{Graph}(F) = \{ (x, y) \in X \times Y \mid y \in F(x) \} + \] +\end{itemize} + +\begin{tcolorbox}[colback=blue!5!white, colframe=blue!70!black, title=Geometric Insight] +The graph of a set-valued function is a \textit{region}, not a curve. It might look like vertical bands or clouds. +\end{tcolorbox} + +--- + +\section*{3. When Do These Appear?} + +Set-valued functions arise naturally across mathematics and its applications: + +\begin{itemize} + \item \textbf{Inverse of non-injective functions:} $f^{-1}(y)$ can have multiple values + \item \textbf{Optimization:} The set of optimal solutions is a set-valued output + \item \textbf{Differential inclusions:} Generalizations of ODEs using sets of derivatives + \item \textbf{Game theory:} Best response mappings are often multifunctions +\end{itemize} + +--- + +\section*{4. Special Types} + +\begin{itemize} + \item \textbf{Single-valued function:} $F(x)$ is always a singleton set $\{y\}$ — classical case + \item \textbf{Constant multifunction:} $F(x) = S$ for all $x$, where $S$ is a fixed set + \item \textbf{Convex-valued multifunction:} Each $F(x)$ is a convex set + \item \textbf{Upper/lower semi-continuous:} Generalizations of continuity for sets +\end{itemize} + +\begin{tcolorbox}[colback=purple!5!white, colframe=purple!70!black, title=Example: Inverse Function] +Let $f(x) = x^2$. Then: + +\[ +f^{-1}(4) = \{-2, 2\}, \quad f^{-1}(9) = \{-3, 3\}, \quad f^{-1}(0) = \{0\} +\] + +This inverse $f^{-1}$ is not a function in the usual sense, but a set-valued function. +\end{tcolorbox} + +--- + +\section*{5. Visualization} + +We can visualize a set-valued function $F(x)$ over $\mathbb{R}$ like this: + +\begin{itemize} + \item If $F(x)$ is a single point $\{y\}$: plot a dot. + \item If $F(x)$ is an interval $[a, b]$: draw a vertical segment at $x$. + \item If $F(x) = \emptyset$: leave a gap or dot a hole. +\end{itemize} + +\begin{tcolorbox}[colback=green!5!white, colframe=green!60!black, title=Metaphor] +Think of $F(x)$ as a “cloud of possible futures” hovering over the point $x$. +\end{tcolorbox} + +--- + +\section*{6. Selection Function} + +A \textbf{selection} of $F$ is a function $f: X \to Y$ such that: + +\[ +f(x) \in F(x) \quad \text{for all } x \in X +\] + +These are useful for extracting deterministic behaviors from uncertain systems. + +\begin{tcolorbox}[colback=cyan!5!white, colframe=cyan!80!black, title=Key Idea] +Set-valued functions describe uncertainty. Selection functions are choices — one thread from a tapestry of options. +\end{tcolorbox} + +--- + +\section*{7. Summary} + +\begin{tcolorbox}[colback=gray!10!white, colframe=black, title=Summary] +\begin{itemize} + \item $F: X \to \mathcal{P}(Y)$ assigns a set of outputs to each input + \item Graph is a subset of $X \times Y$, not just a curve + \item Arise in inverse functions, optimization, control theory, and game theory + \item Visualized as point clouds, vertical lines, or shaded bands + \item Selections are single-valued choices from the set +\end{itemize} +\end{tcolorbox} + +\end{document}