@@ -396,7 +396,7 @@ SIMD instructions are defined in terms of generic numeric operators applied lane
396396
3973975. Let :math: `t_2 ` be the type :math: `\unpacked (t_1 \K {x}N)`.
398398
399- 6. Let :math: `c_2 ` be the result of computing :math: `\extend ^{sx^?}_{| t_1 |,| t_2 | }(i^\ast [x])`.
399+ 6. Let :math: `c_2 ` be the result of computing :math: `\extend ^{sx^?}_{t_1 , t_2 }(i^\ast [x])`.
400400
4014017. Push the value :math: `t_2 .\CONST ~c_2 ` to the stack.
402402
@@ -408,7 +408,7 @@ SIMD instructions are defined in terms of generic numeric operators applied lane
408408 \\ \qquad
409409 \begin {array}[t]{@{}r@{~}l@{}}
410410 (\iff & t_2 = \unpacked (t_1 \K {x}N) \\
411- \wedge & c_2 = \extend ^{sx^?}_{| t_1 |,| t_2 | }(\lanes _{t_1 \K {x}N}(c_1 )[x])
411+ \wedge & c_2 = \extend ^{sx^?}_{t_1 , t_2 }(\lanes _{t_1 \K {x}N}(c_1 )[x])
412412 \end {array}
413413 \end {array}
414414
@@ -430,9 +430,9 @@ SIMD instructions are defined in terms of generic numeric operators applied lane
430430
4314316. Pop the value :math: `\V128 .\VCONST ~c_2 ` from the stack.
432432
433- 7. Let :math: `i_ 2 ^\ast ` be the sequence :math: `\lanes _{\shape }(c_2 )`.
433+ 7. Let :math: `i ^\ast ` be the sequence :math: `\lanes _{\shape }(c_2 )`.
434434
435- 8. Let :math: `c` be the result of computing :math: `\lanes ^{-1 }_{\shape }(i_ 2 ^\ast \with [x] = c_1 )`
435+ 8. Let :math: `c` be the result of computing :math: `\lanes ^{-1 }_{\shape }(i ^\ast \with [x] = c_1 )`
436436
4374379. Push :math: `\V128 .\VCONST ~c` on the stack.
438438
@@ -443,8 +443,8 @@ SIMD instructions are defined in terms of generic numeric operators applied lane
443443 \end {array}
444444 \\ \qquad
445445 \begin {array}[t]{@{}r@{~}l@{}}
446- (\iff & i_ 2 ^\ast = \lanes _{\shape }(c_2 )) \\
447- \wedge & c = \lanes ^{-1 }_{\shape }(i_ 2 ^\ast \with [x] = c_1 )
446+ (\iff & i ^\ast = \lanes _{\shape }(c_2 )) \\
447+ \wedge & c = \lanes ^{-1 }_{\shape }(i ^\ast \with [x] = c_1 )
448448 \end {array}
449449 \end {array}
450450
@@ -680,9 +680,9 @@ SIMD instructions are defined in terms of generic numeric operators applied lane
680680
6816812. Pop the value :math: `\V128 .\VCONST ~c_1 ` from the stack.
682682
683- 3. Let :math: `i_ 1 ^N ` be the sequence :math: `\lanes _{t_1 \K {x}M}(c_1 )[0 \slice N]`.
683+ 3. Let :math: `i^ \ast ` be the sequence :math: `\lanes _{t_1 \K {x}M}(c_1 )[0 \slice N]`.
684684
685- 4. Let :math: `c` be the result of computing :math: `\lanes ^{-1 }_{t_2 \K {x}N}(( \extend ^{\sx }_{t_1 ,t_2 }(i_ 1 ))^N )`
685+ 4. Let :math: `c` be the result of computing :math: `\lanes ^{-1 }_{t_2 \K {x}N}(\extend ^{\sx }_{t_1 ,t_2 }(i^ \ast ) )`
686686
6876875. Push the value :math: `\V128 .\VCONST ~c` onto the stack.
688688
@@ -693,8 +693,8 @@ SIMD instructions are defined in terms of generic numeric operators applied lane
693693 \end {array}
694694 \\ \qquad
695695 \begin {array}[t]{@{}r@{~}l@{}}
696- (\iff & i_ 1 ^N = \lanes _{t_1 \K {x}M}(c_1 )[0 \slice N] \\
697- \wedge & c = \lanes ^{-1 }_{t_2 \K {x}N}(( \extend ^{\sx }_{M,N}(i_ 1 ))^N )
696+ (\iff & i^ \ast = \lanes _{t_1 \K {x}M}(c_1 )[0 \slice N] \\
697+ \wedge & c = \lanes ^{-1 }_{t_2 \K {x}N}(\extend ^{\sx }_{M,N}(i^ \ast ) )
698698 \end {array}
699699 \end {array}
700700
@@ -706,9 +706,9 @@ SIMD instructions are defined in terms of generic numeric operators applied lane
706706
7077072. Pop the value :math: `\V128 .\VCONST ~c_1 ` from the stack.
708708
709- 3. Let :math: `i_ 1 ^N ` be the sequence :math: `\lanes _{t_1 \K {x}M}(c_1 )[N \slice N]`.
709+ 3. Let :math: `i^ \ast ` be the sequence :math: `\lanes _{t_1 \K {x}M}(c_1 )[N \slice N]`.
710710
711- 4. Let :math: `c` be the result of computing :math: `\lanes ^{-1 }_{t_2 \K {x}N}(( \extend ^{\sx }_{t_1 ,t_2 }(i_ 1 ))^N )`
711+ 4. Let :math: `c` be the result of computing :math: `\lanes ^{-1 }_{t_2 \K {x}N}(\extend ^{\sx }_{t_1 ,t_2 }(i^ \ast ) )`
712712
7137135. Push the value :math: `\V128 .\VCONST ~c` onto the stack.
714714
@@ -719,8 +719,8 @@ SIMD instructions are defined in terms of generic numeric operators applied lane
719719 \end {array}
720720 \\ \qquad
721721 \begin {array}[t]{@{}r@{~}l@{}}
722- (\iff & i_ 1 ^N = \lanes _{t_1 \K {x}M}(c_1 )[N \slice N] \\
723- \wedge & c = \lanes ^{-1 }_{t_2 \K {x}N}(( \extend ^{\sx }_{M,N}(i_ 1 ))^N )
722+ (\iff & i^ \ast = \lanes _{t_1 \K {x}M}(c_1 )[N \slice N] \\
723+ \wedge & c = \lanes ^{-1 }_{t_2 \K {x}N}(\extend ^{\sx }_{M,N}(i^ \ast ) )
724724 \end {array}
725725 \end {array}
726726
0 commit comments