diff --git a/src/analysis.lagda.md b/src/analysis.lagda.md
index 99788b360c..143ec1cb78 100644
--- a/src/analysis.lagda.md
+++ b/src/analysis.lagda.md
@@ -3,7 +3,16 @@
```agda
module analysis where
+open import analysis.complete-metric-abelian-groups public
+open import analysis.complete-metric-abelian-groups-real-banach-spaces public
+open import analysis.convergent-series-complete-metric-abelian-groups public
open import analysis.convergent-series-metric-abelian-groups public
+open import analysis.convergent-series-real-banach-spaces public
+open import analysis.convergent-series-real-numbers public
open import analysis.metric-abelian-groups public
+open import analysis.metric-abelian-groups-normed-real-vector-spaces public
+open import analysis.series-complete-metric-abelian-groups public
open import analysis.series-metric-abelian-groups public
+open import analysis.series-real-banach-spaces public
+open import analysis.series-real-numbers public
```
diff --git a/src/analysis/complete-metric-abelian-groups-real-banach-spaces.lagda.md b/src/analysis/complete-metric-abelian-groups-real-banach-spaces.lagda.md
new file mode 100644
index 0000000000..40aa017885
--- /dev/null
+++ b/src/analysis/complete-metric-abelian-groups-real-banach-spaces.lagda.md
@@ -0,0 +1,63 @@
+# Complete metric abelian groups of real Banach spaces
+
+```agda
+module analysis.complete-metric-abelian-groups-real-banach-spaces where
+```
+
+Imports
+
+```agda
+open import analysis.complete-metric-abelian-groups
+open import analysis.metric-abelian-groups
+open import analysis.metric-abelian-groups-normed-real-vector-spaces
+
+open import foundation.dependent-pair-types
+open import foundation.identity-types
+open import foundation.subtypes
+open import foundation.universe-levels
+
+open import linear-algebra.real-banach-spaces
+
+open import real-numbers.metric-additive-group-of-real-numbers
+```
+
+
+
+## Idea
+
+Every [real Banach space](linear-algebra.real-banach-spaces.md) forms a
+[complete metric abelian group](analysis.complete-metric-abelian-groups.md)
+under addition.
+
+## Definition
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : ℝ-Banach-Space l1 l2)
+ where
+
+ metric-ab-add-ℝ-Banach-Space : Metric-Ab l2 l1
+ metric-ab-add-ℝ-Banach-Space =
+ metric-ab-Normed-ℝ-Vector-Space (normed-vector-space-ℝ-Banach-Space V)
+
+ complete-metric-ab-add-ℝ-Banach-Space : Complete-Metric-Ab l2 l1
+ complete-metric-ab-add-ℝ-Banach-Space =
+ ( metric-ab-add-ℝ-Banach-Space , is-complete-metric-space-ℝ-Banach-Space V)
+```
+
+## Properties
+
+### The complete metric abelian group from the reals as a real Banach space equals the standard complete metric abelian group of the reals under addition
+
+```agda
+abstract
+ eq-complete-metric-ab-ℝ :
+ (l : Level) →
+ complete-metric-ab-add-ℝ-Banach-Space (real-banach-space-ℝ l) =
+ complete-metric-ab-add-ℝ l
+ eq-complete-metric-ab-ℝ l =
+ eq-type-subtype
+ ( is-complete-prop-Metric-Ab)
+ ( eq-metric-ab-normed-real-vector-space-metric-ab-ℝ l)
+```
diff --git a/src/analysis/complete-metric-abelian-groups.lagda.md b/src/analysis/complete-metric-abelian-groups.lagda.md
new file mode 100644
index 0000000000..e629810ef1
--- /dev/null
+++ b/src/analysis/complete-metric-abelian-groups.lagda.md
@@ -0,0 +1,65 @@
+# Complete metric abelian groups
+
+```agda
+module analysis.complete-metric-abelian-groups where
+```
+
+Imports
+
+```agda
+open import analysis.metric-abelian-groups
+
+open import foundation.dependent-pair-types
+open import foundation.propositions
+open import foundation.subtypes
+open import foundation.universe-levels
+
+open import metric-spaces.complete-metric-spaces
+open import metric-spaces.metric-spaces
+```
+
+
+
+## Idea
+
+A {{#concept "complete metric abelian group" Agda=Complete-Metric-Ab}} is a
+[metric abelian group](analysis.metric-abelian-groups.md) whose associated
+[metric space](metric-spaces.metric-spaces.md) is
+[complete](metric-spaces.complete-metric-spaces.md).
+
+## Definition
+
+```agda
+is-complete-prop-Metric-Ab : {l1 l2 : Level} → Metric-Ab l1 l2 → Prop (l1 ⊔ l2)
+is-complete-prop-Metric-Ab G =
+ is-complete-prop-Metric-Space (metric-space-Metric-Ab G)
+
+is-complete-Metric-Ab : {l1 l2 : Level} → Metric-Ab l1 l2 → UU (l1 ⊔ l2)
+is-complete-Metric-Ab G = is-complete-Metric-Space (metric-space-Metric-Ab G)
+
+Complete-Metric-Ab : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
+Complete-Metric-Ab l1 l2 = type-subtype (is-complete-prop-Metric-Ab {l1} {l2})
+```
+
+## Properties
+
+```agda
+module _
+ {l1 l2 : Level}
+ (G : Complete-Metric-Ab l1 l2)
+ where
+
+ metric-ab-Complete-Metric-Ab : Metric-Ab l1 l2
+ metric-ab-Complete-Metric-Ab = pr1 G
+
+ metric-space-Complete-Metric-Ab : Metric-Space l1 l2
+ metric-space-Complete-Metric-Ab =
+ metric-space-Metric-Ab metric-ab-Complete-Metric-Ab
+
+ complete-metric-space-Complete-Metric-Ab : Complete-Metric-Space l1 l2
+ complete-metric-space-Complete-Metric-Ab =
+ ( metric-space-Complete-Metric-Ab , pr2 G)
+
+ type-Complete-Metric-Ab : UU l1
+ type-Complete-Metric-Ab = type-Metric-Ab metric-ab-Complete-Metric-Ab
+```
diff --git a/src/analysis/convergent-series-complete-metric-abelian-groups.lagda.md b/src/analysis/convergent-series-complete-metric-abelian-groups.lagda.md
new file mode 100644
index 0000000000..49b1ac0dcc
--- /dev/null
+++ b/src/analysis/convergent-series-complete-metric-abelian-groups.lagda.md
@@ -0,0 +1,79 @@
+# Convergent series in complete metric abelian groups
+
+```agda
+module analysis.convergent-series-complete-metric-abelian-groups where
+```
+
+Imports
+
+```agda
+open import analysis.complete-metric-abelian-groups
+open import analysis.convergent-series-metric-abelian-groups
+open import analysis.series-complete-metric-abelian-groups
+
+open import foundation.dependent-pair-types
+open import foundation.propositions
+open import foundation.universe-levels
+
+open import metric-spaces.cauchy-sequences-complete-metric-spaces
+open import metric-spaces.cauchy-sequences-metric-spaces
+```
+
+
+
+## Idea
+
+A [series](analysis.series-metric-abelian-groups.md)
+[converges](analysis.convergent-series-metric-abelian-groups.md) in a
+[complete metric abelian group](analysis.complete-metric-abelian-groups.md) if
+its partial sums form a
+[Cauchy sequence](metric-spaces.cauchy-sequences-metric-spaces.md).
+
+A slightly modified converse is also true: if a series converges, there
+[exists](foundation.existential-quantification.md) a modulus making it a Cauchy
+sequence.
+
+## Definition
+
+```agda
+module _
+ {l1 l2 : Level}
+ (G : Complete-Metric-Ab l1 l2)
+ (σ : series-Complete-Metric-Ab G)
+ where
+
+ is-sum-prop-series-Complete-Metric-Ab : type-Complete-Metric-Ab G → Prop l2
+ is-sum-prop-series-Complete-Metric-Ab = is-sum-prop-series-Metric-Ab σ
+
+ is-sum-series-Complete-Metric-Ab : type-Complete-Metric-Ab G → UU l2
+ is-sum-series-Complete-Metric-Ab = is-sum-series-Metric-Ab σ
+
+ is-convergent-prop-series-Complete-Metric-Ab : Prop (l1 ⊔ l2)
+ is-convergent-prop-series-Complete-Metric-Ab =
+ is-convergent-prop-series-Metric-Ab σ
+
+ is-convergent-series-Complete-Metric-Ab : UU (l1 ⊔ l2)
+ is-convergent-series-Complete-Metric-Ab = is-convergent-series-Metric-Ab σ
+```
+
+## Properties
+
+### If the partial sums of a series form a Cauchy sequence, the series converges
+
+```agda
+module _
+ {l1 l2 : Level}
+ (G : Complete-Metric-Ab l1 l2)
+ (σ : series-Complete-Metric-Ab G)
+ where
+
+ is-convergent-is-cauchy-sequence-partial-sum-series-Complete-Metric-Ab :
+ is-cauchy-sequence-Metric-Space
+ ( metric-space-Complete-Metric-Ab G)
+ ( partial-sum-series-Complete-Metric-Ab G σ) →
+ is-convergent-series-Complete-Metric-Ab G σ
+ is-convergent-is-cauchy-sequence-partial-sum-series-Complete-Metric-Ab H =
+ has-limit-cauchy-sequence-Complete-Metric-Space
+ ( complete-metric-space-Complete-Metric-Ab G)
+ ( partial-sum-series-Complete-Metric-Ab G σ , H)
+```
diff --git a/src/analysis/convergent-series-real-banach-spaces.lagda.md b/src/analysis/convergent-series-real-banach-spaces.lagda.md
new file mode 100644
index 0000000000..6ef12cc4ec
--- /dev/null
+++ b/src/analysis/convergent-series-real-banach-spaces.lagda.md
@@ -0,0 +1,79 @@
+# Convergent series in real Banach spaces
+
+```agda
+module analysis.convergent-series-real-banach-spaces where
+```
+
+Imports
+
+```agda
+open import analysis.complete-metric-abelian-groups-banach-spaces
+open import analysis.convergent-series-complete-metric-abelian-groups
+open import analysis.convergent-series-metric-abelian-groups
+open import analysis.series-real-banach-spaces
+
+open import foundation.propositions
+open import foundation.universe-levels
+
+open import linear-algebra.real-banach-spaces
+
+open import metric-spaces.cauchy-sequences-metric-spaces
+```
+
+
+
+## Idea
+
+A [series](analysis.series-real-banach-spaces.md)
+[converges](analysis.convergent-series-metric-abelian-groups.md) in a
+[real Banach space](linear-algebra.real-banach-spaces.md) if its partial sums
+form a [Cauchy sequence](metric-spaces.cauchy-sequences-metric-spaces.md).
+
+A slightly modified converse is also true: if a series converges, there
+[exists](foundation.existential-quantification.md) a modulus making it a Cauchy
+sequence.
+
+## Definition
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : ℝ-Banach-Space l1 l2)
+ (σ : series-ℝ-Banach-Space V)
+ where
+
+ is-sum-prop-series-ℝ-Banach-Space : type-ℝ-Banach-Space V → Prop l1
+ is-sum-prop-series-ℝ-Banach-Space = is-sum-prop-series-Metric-Ab σ
+
+ is-sum-series-ℝ-Banach-Space : type-ℝ-Banach-Space V → UU l1
+ is-sum-series-ℝ-Banach-Space = is-sum-series-Metric-Ab σ
+
+ is-convergent-prop-series-ℝ-Banach-Space : Prop (l1 ⊔ l2)
+ is-convergent-prop-series-ℝ-Banach-Space =
+ is-convergent-prop-series-Metric-Ab σ
+
+ is-convergent-series-ℝ-Banach-Space : UU (l1 ⊔ l2)
+ is-convergent-series-ℝ-Banach-Space = is-convergent-series-Metric-Ab σ
+```
+
+## Properties
+
+### If the partial sums of a series form a Cauchy sequence, the series converges
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : ℝ-Banach-Space l1 l2)
+ (σ : series-ℝ-Banach-Space V)
+ where
+
+ is-convergent-is-cauchy-sequence-partial-sum-series-ℝ-Banach-Space :
+ is-cauchy-sequence-Metric-Space
+ ( metric-space-ℝ-Banach-Space V)
+ ( partial-sum-series-ℝ-Banach-Space V σ) →
+ is-convergent-series-ℝ-Banach-Space V σ
+ is-convergent-is-cauchy-sequence-partial-sum-series-ℝ-Banach-Space =
+ is-convergent-is-cauchy-sequence-partial-sum-series-Complete-Metric-Ab
+ ( complete-metric-ab-add-ℝ-Banach-Space V)
+ ( σ)
+```
diff --git a/src/analysis/convergent-series-real-numbers.lagda.md b/src/analysis/convergent-series-real-numbers.lagda.md
new file mode 100644
index 0000000000..a7c911dd9e
--- /dev/null
+++ b/src/analysis/convergent-series-real-numbers.lagda.md
@@ -0,0 +1,74 @@
+# Convergent series in the real numbers
+
+```agda
+module analysis.convergent-series-real-numbers where
+```
+
+Imports
+
+```agda
+open import analysis.convergent-series-complete-metric-abelian-groups
+open import analysis.convergent-series-metric-abelian-groups
+open import analysis.series-real-numbers
+
+open import foundation.propositions
+open import foundation.universe-levels
+
+open import real-numbers.cauchy-sequences-real-numbers
+open import real-numbers.dedekind-real-numbers
+open import real-numbers.metric-additive-group-of-real-numbers
+```
+
+
+
+## Idea
+
+A [series of real numbers](analysis.series-real-numbers.md) is
+{{#concept "convergent" Disambiguation="series in 𝐑" Agda=is-convergent-series-ℝ Agda=convergent-series-ℝ WDID=Q1211057 WD="convergent series"}}
+if its partial sums converge in the
+[metric space of real numbers](real-numbers.metric-space-of-real-numbers.md).
+
+## Definition
+
+```agda
+module _
+ {l : Level}
+ (σ : series-ℝ l)
+ where
+
+ is-sum-prop-series-ℝ : ℝ l → Prop l
+ is-sum-prop-series-ℝ = is-sum-prop-series-Metric-Ab σ
+
+ is-sum-series-ℝ : ℝ l → UU l
+ is-sum-series-ℝ = is-sum-series-Metric-Ab σ
+
+ is-convergent-prop-series-ℝ : Prop (lsuc l)
+ is-convergent-prop-series-ℝ =
+ is-convergent-prop-series-Metric-Ab σ
+
+ is-convergent-series-ℝ : UU (lsuc l)
+ is-convergent-series-ℝ = is-convergent-series-Metric-Ab σ
+```
+
+## Properties
+
+### If the partial sums of a series form a Cauchy sequence, the series converges
+
+```agda
+module _
+ {l : Level}
+ (σ : series-ℝ l)
+ where
+
+ is-convergent-is-cauchy-sequence-partial-sum-series-ℝ :
+ is-cauchy-sequence-ℝ (partial-sum-series-ℝ σ) →
+ is-convergent-series-ℝ σ
+ is-convergent-is-cauchy-sequence-partial-sum-series-ℝ =
+ is-convergent-is-cauchy-sequence-partial-sum-series-Complete-Metric-Ab
+ ( complete-metric-ab-add-ℝ l)
+ ( σ)
+```
+
+## External links
+
+- [Convergent series](https://en.wikipedia.org/wiki/Ratio_test) on Wikipedia
diff --git a/src/analysis/metric-abelian-groups-normed-real-vector-spaces.lagda.md b/src/analysis/metric-abelian-groups-normed-real-vector-spaces.lagda.md
new file mode 100644
index 0000000000..4ee09d54d5
--- /dev/null
+++ b/src/analysis/metric-abelian-groups-normed-real-vector-spaces.lagda.md
@@ -0,0 +1,94 @@
+# Metric abelian groups of normed real vector spaces
+
+```agda
+module analysis.metric-abelian-groups-normed-real-vector-spaces where
+```
+
+Imports
+
+```agda
+open import analysis.metric-abelian-groups
+
+open import foundation.dependent-pair-types
+open import foundation.equality-dependent-pair-types
+open import foundation.identity-types
+open import foundation.logical-equivalences
+open import foundation.subtypes
+open import foundation.universe-levels
+
+open import group-theory.abelian-groups
+
+open import linear-algebra.normed-real-vector-spaces
+
+open import metric-spaces.extensionality-pseudometric-spaces
+open import metric-spaces.metric-spaces
+open import metric-spaces.pseudometric-spaces
+open import metric-spaces.rational-neighborhood-relations
+
+open import real-numbers.dedekind-real-numbers
+open import real-numbers.distance-real-numbers
+open import real-numbers.large-additive-group-of-real-numbers
+open import real-numbers.metric-additive-group-of-real-numbers
+```
+
+
+
+## Idea
+
+A [normed](linear-algebra.normed-real-vector-spaces.md)
+[real vector space](linear-algebra.real-vector-spaces.md) forms a
+[metric abelian group](analysis.metric-abelian-groups.md) under addition.
+
+## Definition
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : Normed-ℝ-Vector-Space l1 l2)
+ where
+
+ ab-metric-ab-Normed-ℝ-Vector-Space : Ab l2
+ ab-metric-ab-Normed-ℝ-Vector-Space = ab-Normed-ℝ-Vector-Space V
+
+ type-metric-ab-Normed-ℝ-Vector-Space : UU l2
+ type-metric-ab-Normed-ℝ-Vector-Space = type-Normed-ℝ-Vector-Space V
+
+ pseudometric-structure-metric-ab-Normed-ℝ-Vector-Space :
+ Pseudometric-Structure l1 type-metric-ab-Normed-ℝ-Vector-Space
+ pseudometric-structure-metric-ab-Normed-ℝ-Vector-Space =
+ pseudometric-structure-Metric-Space (metric-space-Normed-ℝ-Vector-Space V)
+
+ pseudometric-space-metric-ab-Normed-ℝ-Vector-Space :
+ Pseudometric-Space l2 l1
+ pseudometric-space-metric-ab-Normed-ℝ-Vector-Space =
+ pseudometric-Metric-Space (metric-space-Normed-ℝ-Vector-Space V)
+
+ metric-ab-Normed-ℝ-Vector-Space : Metric-Ab l2 l1
+ metric-ab-Normed-ℝ-Vector-Space =
+ ( ab-metric-ab-Normed-ℝ-Vector-Space ,
+ pseudometric-structure-metric-ab-Normed-ℝ-Vector-Space ,
+ is-extensional-pseudometric-Metric-Space
+ ( metric-space-Normed-ℝ-Vector-Space V) ,
+ is-isometry-neg-Normed-ℝ-Vector-Space V ,
+ is-isometry-left-add-Normed-ℝ-Vector-Space V)
+```
+
+## Properties
+
+### The metric abelian group associated with `ℝ` as a normed vector space over `ℝ` is equal to the metric additive group of `ℝ`
+
+```agda
+abstract
+ eq-metric-ab-normed-real-vector-space-metric-ab-ℝ :
+ (l : Level) →
+ metric-ab-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l) =
+ metric-ab-add-ℝ l
+ eq-metric-ab-normed-real-vector-space-metric-ab-ℝ l =
+ eq-pair-eq-fiber
+ ( eq-type-subtype
+ ( λ M → is-metric-ab-prop-Ab-Pseudometric-Structure (ab-add-ℝ l) M)
+ ( eq-type-subtype
+ ( is-pseudometric-prop-Rational-Neighborhood-Relation (ℝ l))
+ ( eq-Eq-Rational-Neighborhood-Relation _ _
+ ( λ d x y → inv-iff (neighborhood-iff-leq-dist-ℝ d x y)))))
+```
diff --git a/src/analysis/metric-abelian-groups.lagda.md b/src/analysis/metric-abelian-groups.lagda.md
index 3306202936..fe8317d466 100644
--- a/src/analysis/metric-abelian-groups.lagda.md
+++ b/src/analysis/metric-abelian-groups.lagda.md
@@ -12,8 +12,10 @@ open import elementary-number-theory.positive-rational-numbers
open import foundation.action-on-identifications-binary-functions
open import foundation.binary-relations
open import foundation.cartesian-product-types
+open import foundation.conjunction
open import foundation.dependent-pair-types
open import foundation.identity-types
+open import foundation.propositions
open import foundation.universe-levels
open import group-theory.abelian-groups
@@ -39,18 +41,25 @@ and negation operation are
## Definition
```agda
+is-metric-ab-prop-Ab-Pseudometric-Structure :
+ {l1 l2 : Level} (G : Ab l1) (M : Pseudometric-Structure l2 (type-Ab G)) →
+ Prop (l1 ⊔ l2)
+is-metric-ab-prop-Ab-Pseudometric-Structure G M =
+ let
+ MS = (type-Ab G , M)
+ in
+ is-extensional-prop-Pseudometric-Space MS ∧
+ is-isometry-prop-Pseudometric-Space MS MS (neg-Ab G) ∧
+ Π-Prop
+ ( type-Ab G)
+ ( λ x → is-isometry-prop-Pseudometric-Space MS MS (add-Ab G x))
+
Metric-Ab : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
Metric-Ab l1 l2 =
Σ ( Ab l1)
( λ G →
Σ ( Pseudometric-Structure l2 (type-Ab G))
- ( λ M →
- let MS = (type-Ab G , M)
- in
- is-extensional-Pseudometric-Space MS ×
- is-isometry-Pseudometric-Space MS MS (neg-Ab G) ×
- ( (x : type-Ab G) →
- is-isometry-Pseudometric-Space MS MS (add-Ab G x))))
+ ( λ M → type-Prop (is-metric-ab-prop-Ab-Pseudometric-Structure G M)))
module _
{l1 l2 : Level} (MG : Metric-Ab l1 l2)
diff --git a/src/analysis/series-complete-metric-abelian-groups.lagda.md b/src/analysis/series-complete-metric-abelian-groups.lagda.md
new file mode 100644
index 0000000000..bb936a8eb0
--- /dev/null
+++ b/src/analysis/series-complete-metric-abelian-groups.lagda.md
@@ -0,0 +1,49 @@
+# Series in complete metric abelian groups
+
+```agda
+module analysis.series-complete-metric-abelian-groups where
+```
+
+Imports
+
+```agda
+open import analysis.complete-metric-abelian-groups
+open import analysis.series-metric-abelian-groups
+
+open import foundation.universe-levels
+
+open import lists.sequences
+```
+
+
+
+## Idea
+
+A [series](analysis.series-metric-abelian-groups.md) in a
+[complete metric abelian group](analysis.complete-metric-abelian-groups.md) is a
+series in the underlying
+[metric abelian group](analysis.metric-abelian-groups.md).
+
+## Definition
+
+```agda
+module _
+ {l1 l2 : Level}
+ (G : Complete-Metric-Ab l1 l2)
+ where
+
+ series-Complete-Metric-Ab : UU l1
+ series-Complete-Metric-Ab = series-Metric-Ab (metric-ab-Complete-Metric-Ab G)
+
+ series-terms-Complete-Metric-Ab :
+ sequence (type-Complete-Metric-Ab G) → series-Complete-Metric-Ab
+ series-terms-Complete-Metric-Ab = series-terms-Metric-Ab
+
+ term-series-Complete-Metric-Ab :
+ series-Complete-Metric-Ab → sequence (type-Complete-Metric-Ab G)
+ term-series-Complete-Metric-Ab = term-series-Metric-Ab
+
+ partial-sum-series-Complete-Metric-Ab :
+ series-Complete-Metric-Ab → sequence (type-Complete-Metric-Ab G)
+ partial-sum-series-Complete-Metric-Ab = partial-sum-series-Metric-Ab
+```
diff --git a/src/analysis/series-real-banach-spaces.lagda.md b/src/analysis/series-real-banach-spaces.lagda.md
new file mode 100644
index 0000000000..7c17414d98
--- /dev/null
+++ b/src/analysis/series-real-banach-spaces.lagda.md
@@ -0,0 +1,58 @@
+# Series in real Banach spaces
+
+```agda
+module analysis.series-real-banach-spaces where
+```
+
+Imports
+
+```agda
+open import analysis.metric-abelian-groups-normed-real-vector-spaces
+open import analysis.series-metric-abelian-groups
+
+open import foundation.universe-levels
+
+open import linear-algebra.real-banach-spaces
+
+open import lists.sequences
+```
+
+
+
+## Idea
+
+A
+{{#concept "series" Disambiguation="in a real Banach space" Agda=series-ℝ-Banach-Space}}
+is a [series](analysis.series-metric-abelian-groups.md) in the
+[metric abelian group](analysis.metric-abelian-groups.md)
+[associated](analysis.metric-abelian-groups-normed-real-vector-spaces.md) with
+the underlying
+[normed real vector space](linear-algebra.normed-real-vector-spaces.md).
+
+## Definition
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : ℝ-Banach-Space l1 l2)
+ where
+
+ series-ℝ-Banach-Space : UU l2
+ series-ℝ-Banach-Space =
+ series-Metric-Ab
+ ( metric-ab-Normed-ℝ-Vector-Space (normed-vector-space-ℝ-Banach-Space V))
+
+ series-terms-ℝ-Banach-Space :
+ sequence (type-ℝ-Banach-Space V) → series-ℝ-Banach-Space
+ series-terms-ℝ-Banach-Space = series-terms-Metric-Ab
+
+ term-series-ℝ-Banach-Space :
+ series-ℝ-Banach-Space → sequence (type-ℝ-Banach-Space V)
+ term-series-ℝ-Banach-Space = term-series-Metric-Ab
+
+ partial-sum-series-ℝ-Banach-Space :
+ series-ℝ-Banach-Space → sequence (type-ℝ-Banach-Space V)
+ partial-sum-series-ℝ-Banach-Space =
+ partial-sum-series-Metric-Ab
+ ( metric-ab-Normed-ℝ-Vector-Space (normed-vector-space-ℝ-Banach-Space V))
+```
diff --git a/src/analysis/series-real-numbers.lagda.md b/src/analysis/series-real-numbers.lagda.md
new file mode 100644
index 0000000000..6b7455caa6
--- /dev/null
+++ b/src/analysis/series-real-numbers.lagda.md
@@ -0,0 +1,44 @@
+# Series in the real numbers
+
+```agda
+module analysis.series-real-numbers where
+```
+
+Imports
+
+```agda
+open import analysis.series-complete-metric-abelian-groups
+open import analysis.series-metric-abelian-groups
+
+open import foundation.universe-levels
+
+open import lists.sequences
+
+open import real-numbers.dedekind-real-numbers
+open import real-numbers.metric-additive-group-of-real-numbers
+```
+
+
+
+## Idea
+
+A {{#concept "series" Disambiguation="of real numbers" Agda=series-ℝ}} in the
+[real numbers](real-numbers.dedekind-real-numbers.md) is a
+[series](analysis.series-metric-abelian-groups.md) in the
+[metric additive group of real numbers](real-numbers.metric-additive-group-of-real-numbers.md).
+
+## Definition
+
+```agda
+series-ℝ : (l : Level) → UU (lsuc l)
+series-ℝ l = series-Complete-Metric-Ab (complete-metric-ab-add-ℝ l)
+
+series-terms-ℝ : {l : Level} → sequence (ℝ l) → series-ℝ l
+series-terms-ℝ = series-terms-Metric-Ab
+
+term-series-ℝ : {l : Level} → series-ℝ l → sequence (ℝ l)
+term-series-ℝ = term-series-Metric-Ab
+
+partial-sum-series-ℝ : {l : Level} → series-ℝ l → sequence (ℝ l)
+partial-sum-series-ℝ {l} = partial-sum-series-Metric-Ab
+```
diff --git a/src/group-theory/abelian-groups.lagda.md b/src/group-theory/abelian-groups.lagda.md
index afd0152826..cd3e651b39 100644
--- a/src/group-theory/abelian-groups.lagda.md
+++ b/src/group-theory/abelian-groups.lagda.md
@@ -622,6 +622,52 @@ module _
add-right-subtraction-Ab = mul-right-div-Group (group-Ab A)
```
+### `(-x) - (-y) = y - x`
+
+```agda
+module _
+ {l : Level} (A : Ab l)
+ where
+
+ abstract
+ right-subtraction-neg-Ab :
+ (x y : type-Ab A) →
+ right-subtraction-Ab A (neg-Ab A x) (neg-Ab A y) =
+ right-subtraction-Ab A y x
+ right-subtraction-neg-Ab x y =
+ equational-reasoning
+ right-subtraction-Ab A (neg-Ab A x) (neg-Ab A y)
+ = add-Ab A (neg-Ab A x) y
+ by ap-add-Ab A refl (neg-neg-Ab A y)
+ = right-subtraction-Ab A y x
+ by commutative-add-Ab A _ _
+```
+
+### `(x + y) - (x + z) = y - z`
+
+```agda
+module _
+ {l : Level} (A : Ab l)
+ where
+
+ abstract
+ right-subtraction-left-add-Ab :
+ (x y z : type-Ab A) →
+ right-subtraction-Ab A (add-Ab A x y) (add-Ab A x z) =
+ right-subtraction-Ab A y z
+ right-subtraction-left-add-Ab x y z =
+ equational-reasoning
+ right-subtraction-Ab A (add-Ab A x y) (add-Ab A x z)
+ = add-Ab A (add-Ab A x y) (add-Ab A (neg-Ab A x) (neg-Ab A z))
+ by ap-add-Ab A refl (distributive-neg-add-Ab A x z)
+ = add-Ab A (right-subtraction-Ab A x x) (right-subtraction-Ab A y z)
+ by interchange-add-add-Ab A _ _ _ _
+ = add-Ab A (zero-Ab A) (right-subtraction-Ab A y z)
+ by ap-add-Ab A (right-inverse-law-add-Ab A x) refl
+ = right-subtraction-Ab A y z
+ by left-unit-law-add-Ab A _
+```
+
### Conjugation is the identity function
**Proof:** Consider two elements `x` and `y` of an abelian group. Then
diff --git a/src/linear-algebra.lagda.md b/src/linear-algebra.lagda.md
index bc84732dbb..18b98d8f6b 100644
--- a/src/linear-algebra.lagda.md
+++ b/src/linear-algebra.lagda.md
@@ -32,13 +32,16 @@ open import linear-algebra.linear-spans-left-modules-rings public
open import linear-algebra.matrices public
open import linear-algebra.matrices-on-rings public
open import linear-algebra.multiplication-matrices public
+open import linear-algebra.normed-real-vector-spaces public
open import linear-algebra.preimages-of-left-module-structures-along-homomorphisms-of-rings public
open import linear-algebra.rational-modules public
+open import linear-algebra.real-banach-spaces public
open import linear-algebra.real-vector-spaces public
open import linear-algebra.right-modules-rings public
open import linear-algebra.scalar-multiplication-matrices public
open import linear-algebra.scalar-multiplication-tuples public
open import linear-algebra.scalar-multiplication-tuples-on-rings public
+open import linear-algebra.seminormed-real-vector-spaces public
open import linear-algebra.subsets-left-modules-rings public
open import linear-algebra.transposition-matrices public
open import linear-algebra.tuples-on-commutative-monoids public
diff --git a/src/linear-algebra/normed-real-vector-spaces.lagda.md b/src/linear-algebra/normed-real-vector-spaces.lagda.md
new file mode 100644
index 0000000000..798b3ca6c8
--- /dev/null
+++ b/src/linear-algebra/normed-real-vector-spaces.lagda.md
@@ -0,0 +1,396 @@
+# Normed real vector spaces
+
+```agda
+{-# OPTIONS --lossy-unification #-}
+
+module linear-algebra.normed-real-vector-spaces where
+```
+
+Imports
+
+```agda
+open import foundation.action-on-identifications-functions
+open import foundation.dependent-pair-types
+open import foundation.identity-types
+open import foundation.logical-equivalences
+open import foundation.propositions
+open import foundation.sets
+open import foundation.subtypes
+open import foundation.transport-along-identifications
+open import foundation.universe-levels
+
+open import group-theory.abelian-groups
+
+open import linear-algebra.real-vector-spaces
+open import linear-algebra.seminormed-real-vector-spaces
+
+open import metric-spaces.equality-of-metric-spaces
+open import metric-spaces.isometries-metric-spaces
+open import metric-spaces.located-metric-spaces
+open import metric-spaces.metric-spaces
+open import metric-spaces.metrics
+open import metric-spaces.metrics-of-metric-spaces
+
+open import real-numbers.absolute-value-real-numbers
+open import real-numbers.dedekind-real-numbers
+open import real-numbers.distance-real-numbers
+open import real-numbers.metric-space-of-real-numbers
+open import real-numbers.nonnegative-real-numbers
+open import real-numbers.raising-universe-levels-real-numbers
+open import real-numbers.rational-real-numbers
+open import real-numbers.saturation-inequality-nonnegative-real-numbers
+open import real-numbers.similarity-real-numbers
+```
+
+
+
+## Idea
+
+A
+{{#concept "norm" WDID=Q956437 WD="norm" Disambiguation="on a real vector space" Agda=norm-ℝ-Vector-Space}}
+on a [real vector space](linear-algebra.real-vector-spaces.md) `V` is a
+[seminorm](linear-algebra.seminormed-real-vector-spaces.md) `p` on `V` that is
+**extensional**: if `p v = 0`, then `v` is the zero vector.
+
+A real vector space equipped with such a norm is called a
+{{#concept "normed vector space" Disambiguation="normed real vector space" WDID=Q726210 WD="normed vector space" Agda=Normed-ℝ-Vector-Space}}.
+
+A norm on a real vector space induces a
+[located](metric-spaces.located-metric-spaces.md)
+[metric space](metric-spaces.metric-spaces.md) on the vector space, defined by
+the neighborhood relation that `v` and `w` are in an `ε`-neighborhood of each
+other if `p (v - w) ≤ ε`.
+
+## Definition
+
+```agda
+module _
+ {l1 l2 : Level} (V : ℝ-Vector-Space l1 l2) (p : seminorm-ℝ-Vector-Space V)
+ where
+
+ is-norm-prop-seminorm-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2)
+ is-norm-prop-seminorm-ℝ-Vector-Space =
+ Π-Prop
+ ( type-ℝ-Vector-Space V)
+ ( λ v →
+ hom-Prop
+ ( Id-Prop (ℝ-Set l1) (pr1 p v) (raise-ℝ l1 zero-ℝ))
+ ( is-zero-prop-ℝ-Vector-Space V v))
+
+ is-norm-seminorm-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2)
+ is-norm-seminorm-ℝ-Vector-Space =
+ type-Prop is-norm-prop-seminorm-ℝ-Vector-Space
+
+norm-ℝ-Vector-Space : {l1 l2 : Level} → ℝ-Vector-Space l1 l2 → UU (lsuc l1 ⊔ l2)
+norm-ℝ-Vector-Space V = type-subtype (is-norm-prop-seminorm-ℝ-Vector-Space V)
+
+Normed-ℝ-Vector-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
+Normed-ℝ-Vector-Space l1 l2 = Σ (ℝ-Vector-Space l1 l2) norm-ℝ-Vector-Space
+```
+
+## Properties
+
+```agda
+module _
+ {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2)
+ where
+
+ vector-space-Normed-ℝ-Vector-Space : ℝ-Vector-Space l1 l2
+ vector-space-Normed-ℝ-Vector-Space = pr1 V
+
+ ab-Normed-ℝ-Vector-Space : Ab l2
+ ab-Normed-ℝ-Vector-Space =
+ ab-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+
+ norm-Normed-ℝ-Vector-Space :
+ norm-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+ norm-Normed-ℝ-Vector-Space = pr2 V
+
+ seminorm-Normed-ℝ-Vector-Space :
+ seminorm-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+ seminorm-Normed-ℝ-Vector-Space = pr1 norm-Normed-ℝ-Vector-Space
+
+ seminormed-vector-space-Normed-ℝ-Vector-Space :
+ Seminormed-ℝ-Vector-Space l1 l2
+ seminormed-vector-space-Normed-ℝ-Vector-Space =
+ ( vector-space-Normed-ℝ-Vector-Space , seminorm-Normed-ℝ-Vector-Space)
+
+ set-Normed-ℝ-Vector-Space : Set l2
+ set-Normed-ℝ-Vector-Space =
+ set-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+
+ type-Normed-ℝ-Vector-Space : UU l2
+ type-Normed-ℝ-Vector-Space =
+ type-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+
+ add-Normed-ℝ-Vector-Space :
+ type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space →
+ type-Normed-ℝ-Vector-Space
+ add-Normed-ℝ-Vector-Space =
+ add-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+
+ commutative-add-Normed-ℝ-Vector-Space :
+ (u v : type-Normed-ℝ-Vector-Space) →
+ add-Normed-ℝ-Vector-Space u v = add-Normed-ℝ-Vector-Space v u
+ commutative-add-Normed-ℝ-Vector-Space =
+ commutative-add-Ab ab-Normed-ℝ-Vector-Space
+
+ diff-Normed-ℝ-Vector-Space :
+ type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space →
+ type-Normed-ℝ-Vector-Space
+ diff-Normed-ℝ-Vector-Space =
+ diff-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+
+ neg-Normed-ℝ-Vector-Space :
+ type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space
+ neg-Normed-ℝ-Vector-Space =
+ neg-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+
+ neg-neg-Normed-ℝ-Vector-Space :
+ (v : type-Normed-ℝ-Vector-Space) →
+ neg-Normed-ℝ-Vector-Space (neg-Normed-ℝ-Vector-Space v) = v
+ neg-neg-Normed-ℝ-Vector-Space =
+ neg-neg-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+
+ distributive-neg-add-Normed-ℝ-Vector-Space :
+ (v w : type-Normed-ℝ-Vector-Space) →
+ neg-Normed-ℝ-Vector-Space (add-Normed-ℝ-Vector-Space v w) =
+ add-Normed-ℝ-Vector-Space
+ ( neg-Normed-ℝ-Vector-Space v)
+ ( neg-Normed-ℝ-Vector-Space w)
+ distributive-neg-add-Normed-ℝ-Vector-Space =
+ distributive-neg-add-Ab ab-Normed-ℝ-Vector-Space
+
+ interchange-add-add-Normed-ℝ-Vector-Space :
+ (u v w x : type-Normed-ℝ-Vector-Space) →
+ add-Normed-ℝ-Vector-Space
+ ( add-Normed-ℝ-Vector-Space u v)
+ ( add-Normed-ℝ-Vector-Space w x) =
+ add-Normed-ℝ-Vector-Space
+ ( add-Normed-ℝ-Vector-Space u w)
+ ( add-Normed-ℝ-Vector-Space v x)
+ interchange-add-add-Normed-ℝ-Vector-Space =
+ interchange-add-add-Ab ab-Normed-ℝ-Vector-Space
+
+ zero-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space
+ zero-Normed-ℝ-Vector-Space =
+ zero-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space
+
+ left-unit-law-add-Normed-ℝ-Vector-Space :
+ (v : type-Normed-ℝ-Vector-Space) →
+ add-Normed-ℝ-Vector-Space zero-Normed-ℝ-Vector-Space v = v
+ left-unit-law-add-Normed-ℝ-Vector-Space =
+ left-unit-law-add-Ab ab-Normed-ℝ-Vector-Space
+
+ right-inverse-law-add-Normed-ℝ-Vector-Space :
+ (v : type-Normed-ℝ-Vector-Space) →
+ diff-Normed-ℝ-Vector-Space v v = zero-Normed-ℝ-Vector-Space
+ right-inverse-law-add-Normed-ℝ-Vector-Space =
+ right-inverse-law-add-Ab ab-Normed-ℝ-Vector-Space
+
+ map-norm-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space → ℝ l1
+ map-norm-Normed-ℝ-Vector-Space = pr1 (pr1 norm-Normed-ℝ-Vector-Space)
+
+ nonnegative-norm-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space → ℝ⁰⁺ l1
+ nonnegative-norm-Normed-ℝ-Vector-Space =
+ nonnegative-seminorm-Seminormed-ℝ-Vector-Space
+ ( seminormed-vector-space-Normed-ℝ-Vector-Space)
+
+ dist-Normed-ℝ-Vector-Space :
+ type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space → ℝ l1
+ dist-Normed-ℝ-Vector-Space =
+ dist-Seminormed-ℝ-Vector-Space seminormed-vector-space-Normed-ℝ-Vector-Space
+
+ nonnegative-dist-Normed-ℝ-Vector-Space :
+ type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space → ℝ⁰⁺ l1
+ nonnegative-dist-Normed-ℝ-Vector-Space =
+ nonnegative-dist-Seminormed-ℝ-Vector-Space
+ ( seminormed-vector-space-Normed-ℝ-Vector-Space)
+
+ is-extensional-norm-Normed-ℝ-Vector-Space :
+ (v : type-Normed-ℝ-Vector-Space) →
+ map-norm-Normed-ℝ-Vector-Space v = raise-ℝ l1 zero-ℝ →
+ v = zero-Normed-ℝ-Vector-Space
+ is-extensional-norm-Normed-ℝ-Vector-Space = pr2 norm-Normed-ℝ-Vector-Space
+
+ is-extensional-dist-Normed-ℝ-Vector-Space :
+ (v w : type-Normed-ℝ-Vector-Space) →
+ dist-Normed-ℝ-Vector-Space v w = raise-ℝ l1 zero-ℝ →
+ v = w
+ is-extensional-dist-Normed-ℝ-Vector-Space v w |v-w|=0 =
+ eq-is-zero-right-subtraction-Ab
+ ( ab-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space)
+ ( is-extensional-norm-Normed-ℝ-Vector-Space
+ ( diff-Normed-ℝ-Vector-Space v w)
+ ( |v-w|=0))
+
+ commutative-dist-Normed-ℝ-Vector-Space :
+ (v w : type-Normed-ℝ-Vector-Space) →
+ dist-Normed-ℝ-Vector-Space v w = dist-Normed-ℝ-Vector-Space w v
+ commutative-dist-Normed-ℝ-Vector-Space =
+ commutative-dist-Seminormed-ℝ-Vector-Space
+ ( seminormed-vector-space-Normed-ℝ-Vector-Space)
+```
+
+### The metric space of a normed vector space
+
+```agda
+module _
+ {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2)
+ where
+
+ refl-norm-Normed-ℝ-Vector-Space :
+ (v : type-Normed-ℝ-Vector-Space V) →
+ sim-ℝ zero-ℝ (dist-Normed-ℝ-Vector-Space V v v)
+ refl-norm-Normed-ℝ-Vector-Space v =
+ inv-tr
+ ( sim-ℝ zero-ℝ)
+ ( is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space
+ ( seminormed-vector-space-Normed-ℝ-Vector-Space V)
+ ( v))
+ ( sim-raise-ℝ l1 zero-ℝ)
+
+ metric-Normed-ℝ-Vector-Space : Metric l1 (set-Normed-ℝ-Vector-Space V)
+ metric-Normed-ℝ-Vector-Space =
+ ( nonnegative-dist-Normed-ℝ-Vector-Space V ,
+ refl-norm-Normed-ℝ-Vector-Space ,
+ ( λ v w → eq-ℝ⁰⁺ _ _ (commutative-dist-Normed-ℝ-Vector-Space V v w)) ,
+ triangular-dist-Seminormed-ℝ-Vector-Space
+ ( seminormed-vector-space-Normed-ℝ-Vector-Space V) ,
+ ( λ v w 0~dvw →
+ is-extensional-dist-Normed-ℝ-Vector-Space V v w
+ ( eq-sim-ℝ
+ ( transitive-sim-ℝ _ _ _
+ ( sim-raise-ℝ l1 zero-ℝ)
+ ( symmetric-sim-ℝ 0~dvw)))))
+
+ metric-space-Normed-ℝ-Vector-Space : Metric-Space l2 l1
+ metric-space-Normed-ℝ-Vector-Space =
+ metric-space-Metric
+ ( set-Normed-ℝ-Vector-Space V)
+ ( metric-Normed-ℝ-Vector-Space)
+
+ located-metric-space-Normed-ℝ-Vector-Space : Located-Metric-Space l2 l1
+ located-metric-space-Normed-ℝ-Vector-Space =
+ located-metric-space-Metric
+ ( set-Normed-ℝ-Vector-Space V)
+ ( metric-Normed-ℝ-Vector-Space)
+```
+
+## Properties
+
+### The real numbers are a normed vector space over themselves with norm `x ↦ |x|`
+
+```agda
+normed-real-vector-space-ℝ :
+ (l : Level) → Normed-ℝ-Vector-Space l (lsuc l)
+normed-real-vector-space-ℝ l =
+ ( real-vector-space-ℝ l ,
+ ( abs-ℝ , triangle-inequality-abs-ℝ , abs-mul-ℝ) ,
+ eq-raise-zero-eq-raise-zero-abs-ℝ)
+
+abstract
+ eq-metric-space-normed-real-vector-space-metric-space-ℝ :
+ (l : Level) →
+ metric-space-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l) =
+ metric-space-ℝ l
+ eq-metric-space-normed-real-vector-space-metric-space-ℝ l =
+ eq-isometric-eq-Metric-Space _ _
+ ( refl , λ d x y → inv-iff (neighborhood-iff-leq-dist-ℝ d x y))
+```
+
+### Negation is an isometry in the metric space of a normed vector space
+
+```agda
+module _
+ {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2)
+ where
+
+ abstract
+ is-isometry-neg-Normed-ℝ-Vector-Space :
+ is-isometry-Metric-Space
+ ( metric-space-Normed-ℝ-Vector-Space V)
+ ( metric-space-Normed-ℝ-Vector-Space V)
+ ( neg-Normed-ℝ-Vector-Space V)
+ is-isometry-neg-Normed-ℝ-Vector-Space =
+ is-isometry-sim-metric-Metric-Space
+ ( metric-space-Normed-ℝ-Vector-Space V)
+ ( metric-space-Normed-ℝ-Vector-Space V)
+ ( nonnegative-dist-Normed-ℝ-Vector-Space V)
+ ( nonnegative-dist-Normed-ℝ-Vector-Space V)
+ ( is-metric-metric-space-Metric
+ ( set-Normed-ℝ-Vector-Space V)
+ ( metric-Normed-ℝ-Vector-Space V))
+ ( is-metric-metric-space-Metric
+ ( set-Normed-ℝ-Vector-Space V)
+ ( metric-Normed-ℝ-Vector-Space V))
+ ( neg-Normed-ℝ-Vector-Space V)
+ ( λ x y →
+ sim-eq-ℝ
+ ( inv
+ ( equational-reasoning
+ dist-Normed-ℝ-Vector-Space V
+ ( neg-Normed-ℝ-Vector-Space V x)
+ ( neg-Normed-ℝ-Vector-Space V y)
+ = dist-Normed-ℝ-Vector-Space V y x
+ by
+ ap
+ ( map-norm-Normed-ℝ-Vector-Space V)
+ ( right-subtraction-neg-Ab
+ ( ab-Normed-ℝ-Vector-Space V)
+ ( _)
+ ( _))
+ = dist-Normed-ℝ-Vector-Space V x y
+ by commutative-dist-Normed-ℝ-Vector-Space V y x)))
+```
+
+### Addition is an isometry in the metric space of a normed vector space
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : Normed-ℝ-Vector-Space l1 l2)
+ (u : type-Normed-ℝ-Vector-Space V)
+ where
+
+ abstract
+ is-isometry-left-add-Normed-ℝ-Vector-Space :
+ is-isometry-Metric-Space
+ ( metric-space-Normed-ℝ-Vector-Space V)
+ ( metric-space-Normed-ℝ-Vector-Space V)
+ ( add-Normed-ℝ-Vector-Space V u)
+ is-isometry-left-add-Normed-ℝ-Vector-Space =
+ is-isometry-sim-metric-Metric-Space
+ ( metric-space-Normed-ℝ-Vector-Space V)
+ ( metric-space-Normed-ℝ-Vector-Space V)
+ ( nonnegative-dist-Normed-ℝ-Vector-Space V)
+ ( nonnegative-dist-Normed-ℝ-Vector-Space V)
+ ( is-metric-metric-space-Metric
+ ( set-Normed-ℝ-Vector-Space V)
+ ( metric-Normed-ℝ-Vector-Space V))
+ ( is-metric-metric-space-Metric
+ ( set-Normed-ℝ-Vector-Space V)
+ ( metric-Normed-ℝ-Vector-Space V))
+ ( add-Normed-ℝ-Vector-Space V u)
+ ( λ v w →
+ sim-eq-ℝ
+ ( ap
+ ( map-norm-Normed-ℝ-Vector-Space V)
+ ( inv
+ ( right-subtraction-left-add-Ab
+ ( ab-Normed-ℝ-Vector-Space V)
+ ( u)
+ ( v)
+ ( w)))))
+```
+
+## See also
+
+- [Real Banach spaces](linear-algebra.real-banach-spaces.md), normed real vector
+ spaces for which the induced metric space is
+ [complete](metric-spaces.complete-metric-spaces.md)
+
+## External links
+
+- [Normed vector space](https://en.wikipedia.org/wiki/Normed_vector_space) on
+ Wikipedia
diff --git a/src/linear-algebra/real-banach-spaces.lagda.md b/src/linear-algebra/real-banach-spaces.lagda.md
new file mode 100644
index 0000000000..a1fe26c2c7
--- /dev/null
+++ b/src/linear-algebra/real-banach-spaces.lagda.md
@@ -0,0 +1,130 @@
+# Real Banach spaces
+
+```agda
+{-# OPTIONS --lossy-unification #-}
+
+module linear-algebra.real-banach-spaces where
+```
+
+Imports
+
+```agda
+open import foundation.dependent-pair-types
+open import foundation.propositions
+open import foundation.subtypes
+open import foundation.transport-along-identifications
+open import foundation.universe-levels
+
+open import linear-algebra.normed-real-vector-spaces
+
+open import lists.sequences
+
+open import metric-spaces.cauchy-sequences-complete-metric-spaces
+open import metric-spaces.cauchy-sequences-metric-spaces
+open import metric-spaces.complete-metric-spaces
+open import metric-spaces.limits-of-sequences-metric-spaces
+open import metric-spaces.metric-spaces
+
+open import real-numbers.cauchy-completeness-dedekind-real-numbers
+open import real-numbers.dedekind-real-numbers
+```
+
+
+
+## Idea
+
+A real
+{{#concept "Banach space" WDID=Q194397 WD="Banach space" Disambiguation="over ℝ" Agda=ℝ-Banach-Space}}
+is a [normed](linear-algebra.normed-real-vector-spaces.md)
+[real vector space](linear-algebra.real-vector-spaces.md) such that the
+[metric space](metric-spaces.metric-spaces.md) induced by the norm is
+[complete](metric-spaces.complete-metric-spaces.md).
+
+## Definition
+
+```agda
+is-banach-prop-Normed-ℝ-Vector-Space :
+ {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) → Prop (l1 ⊔ l2)
+is-banach-prop-Normed-ℝ-Vector-Space V =
+ is-complete-prop-Metric-Space (metric-space-Normed-ℝ-Vector-Space V)
+
+is-banach-Normed-ℝ-Vector-Space :
+ {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) → UU (l1 ⊔ l2)
+is-banach-Normed-ℝ-Vector-Space V =
+ type-Prop (is-banach-prop-Normed-ℝ-Vector-Space V)
+
+ℝ-Banach-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
+ℝ-Banach-Space l1 l2 =
+ type-subtype (is-banach-prop-Normed-ℝ-Vector-Space {l1} {l2})
+
+module _
+ {l1 l2 : Level}
+ (V : ℝ-Banach-Space l1 l2)
+ where
+
+ normed-vector-space-ℝ-Banach-Space : Normed-ℝ-Vector-Space l1 l2
+ normed-vector-space-ℝ-Banach-Space = pr1 V
+
+ metric-space-ℝ-Banach-Space : Metric-Space l2 l1
+ metric-space-ℝ-Banach-Space =
+ metric-space-Normed-ℝ-Vector-Space normed-vector-space-ℝ-Banach-Space
+
+ is-complete-metric-space-ℝ-Banach-Space :
+ is-complete-Metric-Space metric-space-ℝ-Banach-Space
+ is-complete-metric-space-ℝ-Banach-Space = pr2 V
+
+ complete-metric-space-ℝ-Banach-Space : Complete-Metric-Space l2 l1
+ complete-metric-space-ℝ-Banach-Space =
+ ( metric-space-ℝ-Banach-Space , is-complete-metric-space-ℝ-Banach-Space)
+
+ type-ℝ-Banach-Space : UU l2
+ type-ℝ-Banach-Space =
+ type-Normed-ℝ-Vector-Space normed-vector-space-ℝ-Banach-Space
+
+ map-norm-ℝ-Banach-Space : type-ℝ-Banach-Space → ℝ l1
+ map-norm-ℝ-Banach-Space =
+ map-norm-Normed-ℝ-Vector-Space normed-vector-space-ℝ-Banach-Space
+
+ cauchy-sequence-ℝ-Banach-Space : UU (l1 ⊔ l2)
+ cauchy-sequence-ℝ-Banach-Space =
+ cauchy-sequence-Metric-Space metric-space-ℝ-Banach-Space
+
+ is-cauchy-sequence-ℝ-Banach-Space :
+ sequence type-ℝ-Banach-Space → UU l1
+ is-cauchy-sequence-ℝ-Banach-Space =
+ is-cauchy-sequence-Metric-Space metric-space-ℝ-Banach-Space
+
+ map-cauchy-sequence-ℝ-Banach-Space :
+ cauchy-sequence-ℝ-Banach-Space → sequence type-ℝ-Banach-Space
+ map-cauchy-sequence-ℝ-Banach-Space = pr1
+
+ has-limit-sequence-ℝ-Banach-Space :
+ sequence type-ℝ-Banach-Space → UU (l1 ⊔ l2)
+ has-limit-sequence-ℝ-Banach-Space =
+ has-limit-sequence-Metric-Space metric-space-ℝ-Banach-Space
+
+ has-limit-cauchy-sequence-ℝ-Banach-Space :
+ (σ : cauchy-sequence-ℝ-Banach-Space) →
+ has-limit-sequence-ℝ-Banach-Space (map-cauchy-sequence-ℝ-Banach-Space σ)
+ has-limit-cauchy-sequence-ℝ-Banach-Space =
+ has-limit-cauchy-sequence-Complete-Metric-Space
+ ( complete-metric-space-ℝ-Banach-Space)
+```
+
+## Properties
+
+### The real numbers are a real Banach space with norm `x ↦ |x|`
+
+```agda
+real-banach-space-ℝ : (l : Level) → ℝ-Banach-Space l (lsuc l)
+real-banach-space-ℝ l =
+ ( normed-real-vector-space-ℝ l ,
+ inv-tr
+ ( is-complete-Metric-Space)
+ ( eq-metric-space-normed-real-vector-space-metric-space-ℝ l)
+ ( is-complete-metric-space-ℝ l))
+```
+
+## External links
+
+- [Banach space](https://en.wikipedia.org/wiki/Banach_space) on Wikipedia
diff --git a/src/linear-algebra/real-vector-spaces.lagda.md b/src/linear-algebra/real-vector-spaces.lagda.md
index bc1d8cd6f2..526b466b41 100644
--- a/src/linear-algebra/real-vector-spaces.lagda.md
+++ b/src/linear-algebra/real-vector-spaces.lagda.md
@@ -1,17 +1,24 @@
# Real vector spaces
```agda
+{-# OPTIONS --lossy-unification #-}
+
module linear-algebra.real-vector-spaces where
```
Imports
```agda
+open import elementary-number-theory.natural-numbers
+
+open import foundation.action-on-identifications-functions
open import foundation.identity-types
open import foundation.sets
+open import foundation.subtypes
open import foundation.universe-levels
open import group-theory.abelian-groups
+open import group-theory.multiples-of-elements-abelian-groups
open import linear-algebra.vector-spaces
@@ -63,12 +70,23 @@ module _
zero-ℝ-Vector-Space : type-ℝ-Vector-Space
zero-ℝ-Vector-Space = zero-Ab ab-ℝ-Vector-Space
+ is-zero-prop-ℝ-Vector-Space : subtype l2 type-ℝ-Vector-Space
+ is-zero-prop-ℝ-Vector-Space = is-zero-prop-Ab ab-ℝ-Vector-Space
+
+ is-zero-ℝ-Vector-Space : type-ℝ-Vector-Space → UU l2
+ is-zero-ℝ-Vector-Space = is-zero-Ab ab-ℝ-Vector-Space
+
neg-ℝ-Vector-Space : type-ℝ-Vector-Space → type-ℝ-Vector-Space
neg-ℝ-Vector-Space = neg-Ab ab-ℝ-Vector-Space
mul-ℝ-Vector-Space : ℝ l1 → type-ℝ-Vector-Space → type-ℝ-Vector-Space
mul-ℝ-Vector-Space = mul-Vector-Space (heyting-field-ℝ l1) V
+ diff-ℝ-Vector-Space :
+ type-ℝ-Vector-Space → type-ℝ-Vector-Space → type-ℝ-Vector-Space
+ diff-ℝ-Vector-Space v w =
+ add-ℝ-Vector-Space v (neg-ℝ-Vector-Space w)
+
associative-add-ℝ-Vector-Space :
(v w x : type-ℝ-Vector-Space) →
add-ℝ-Vector-Space (add-ℝ-Vector-Space v w) x =
@@ -100,6 +118,16 @@ module _
add-ℝ-Vector-Space v w = add-ℝ-Vector-Space w v
commutative-add-ℝ-Vector-Space = commutative-add-Ab ab-ℝ-Vector-Space
+ add-diff-ℝ-Vector-Space :
+ (v w x : type-ℝ-Vector-Space) →
+ add-ℝ-Vector-Space (diff-ℝ-Vector-Space v w) (diff-ℝ-Vector-Space w x) =
+ diff-ℝ-Vector-Space v x
+ add-diff-ℝ-Vector-Space = add-right-subtraction-Ab ab-ℝ-Vector-Space
+
+ neg-neg-ℝ-Vector-Space :
+ (v : type-ℝ-Vector-Space) → neg-ℝ-Vector-Space (neg-ℝ-Vector-Space v) = v
+ neg-neg-ℝ-Vector-Space = neg-neg-Ab ab-ℝ-Vector-Space
+
left-unit-law-mul-ℝ-Vector-Space :
(v : type-ℝ-Vector-Space) →
mul-ℝ-Vector-Space (raise-ℝ l1 one-ℝ) v = v
@@ -158,6 +186,56 @@ module _
mul-ℝ-Vector-Space (neg-ℝ (raise-ℝ l1 one-ℝ)) v = neg-ℝ-Vector-Space v
mul-neg-one-ℝ-Vector-Space =
mul-neg-one-Vector-Space (heyting-field-ℝ l1) V
+
+ ap-add-ℝ-Vector-Space :
+ {x x' y y' : type-ℝ-Vector-Space} → x = x' → y = y' →
+ add-ℝ-Vector-Space x y = add-ℝ-Vector-Space x' y'
+ ap-add-ℝ-Vector-Space = ap-add-Ab ab-ℝ-Vector-Space
+```
+
+## Properties
+
+### Multiplication by a natural number is iterated addition
+
+```agda
+module _
+ {l1 l2 : Level} (V : ℝ-Vector-Space l1 l2)
+ where
+
+ abstract
+ left-mul-real-ℕ-ℝ-Vector-Space :
+ (n : ℕ) (v : type-ℝ-Vector-Space V) →
+ mul-ℝ-Vector-Space V (raise-ℝ l1 (real-ℕ n)) v =
+ multiple-Ab (ab-ℝ-Vector-Space V) n v
+ left-mul-real-ℕ-ℝ-Vector-Space 0 v =
+ left-zero-law-mul-ℝ-Vector-Space V v
+ left-mul-real-ℕ-ℝ-Vector-Space 1 v =
+ left-unit-law-mul-ℝ-Vector-Space V v
+ left-mul-real-ℕ-ℝ-Vector-Space (succ-ℕ n@(succ-ℕ _)) v =
+ equational-reasoning
+ mul-ℝ-Vector-Space V (raise-ℝ l1 (real-ℕ (succ-ℕ n))) v
+ = mul-ℝ-Vector-Space V (raise-ℝ l1 (real-ℕ n) +ℝ raise-ℝ l1 one-ℝ) v
+ by
+ ap
+ ( λ c → mul-ℝ-Vector-Space V c v)
+ ( equational-reasoning
+ raise-ℝ l1 (real-ℕ (succ-ℕ n))
+ = raise-ℝ l1 (real-ℕ n +ℝ one-ℝ)
+ by ap (raise-ℝ l1) (inv (add-real-ℕ n 1))
+ = raise-ℝ l1 (real-ℕ n) +ℝ raise-ℝ l1 one-ℝ
+ by distributive-raise-add-ℝ l1 (real-ℕ n) one-ℝ)
+ =
+ add-ℝ-Vector-Space V
+ ( mul-ℝ-Vector-Space V (raise-ℝ l1 (real-ℕ n)) v)
+ ( mul-ℝ-Vector-Space V (raise-ℝ l1 one-ℝ) v)
+ by right-distributive-mul-add-ℝ-Vector-Space V _ _ _
+ =
+ multiple-Ab (ab-ℝ-Vector-Space V) (succ-ℕ n) v
+ by
+ ap-add-ℝ-Vector-Space
+ ( V)
+ ( left-mul-real-ℕ-ℝ-Vector-Space n v)
+ ( left-unit-law-mul-ℝ-Vector-Space V v)
```
### The real numbers are a real vector space
@@ -172,3 +250,4 @@ real-vector-space-ℝ l =
## See also
- [Vector spaces](linear-algebra.vector-spaces.md)
+- [Normed real vector spaces](linear-algebra.normed-real-vector-spaces.md)
diff --git a/src/linear-algebra/seminormed-real-vector-spaces.lagda.md b/src/linear-algebra/seminormed-real-vector-spaces.lagda.md
new file mode 100644
index 0000000000..2baea3c63b
--- /dev/null
+++ b/src/linear-algebra/seminormed-real-vector-spaces.lagda.md
@@ -0,0 +1,608 @@
+# Seminormed real vector spaces
+
+```agda
+{-# OPTIONS --lossy-unification #-}
+
+module linear-algebra.seminormed-real-vector-spaces where
+```
+
+Imports
+
+```agda
+open import elementary-number-theory.addition-positive-rational-numbers
+open import elementary-number-theory.positive-rational-numbers
+
+open import foundation.action-on-identifications-functions
+open import foundation.binary-relations
+open import foundation.conjunction
+open import foundation.dependent-pair-types
+open import foundation.identity-types
+open import foundation.propositions
+open import foundation.sets
+open import foundation.subtypes
+open import foundation.transport-along-identifications
+open import foundation.universe-levels
+
+open import group-theory.abelian-groups
+
+open import linear-algebra.real-vector-spaces
+
+open import metric-spaces.pseudometric-spaces
+
+open import order-theory.large-posets
+
+open import real-numbers.absolute-value-real-numbers
+open import real-numbers.addition-real-numbers
+open import real-numbers.dedekind-real-numbers
+open import real-numbers.inequalities-addition-and-subtraction-real-numbers
+open import real-numbers.inequality-real-numbers
+open import real-numbers.multiplication-positive-real-numbers
+open import real-numbers.multiplication-real-numbers
+open import real-numbers.negation-real-numbers
+open import real-numbers.nonnegative-real-numbers
+open import real-numbers.positive-real-numbers
+open import real-numbers.raising-universe-levels-real-numbers
+open import real-numbers.rational-real-numbers
+open import real-numbers.saturation-inequality-nonnegative-real-numbers
+open import real-numbers.similarity-real-numbers
+open import real-numbers.strict-inequality-real-numbers
+```
+
+
+
+## Idea
+
+A
+{{#concept "seminorm" WDID=Q1416088 WD="seminorm" Disambiguation="on a real vector space" Agda=seminorm-ℝ-Vector-Space}}
+on a [real vector space](linear-algebra.real-vector-spaces.md) `V` is a
+[real](real-numbers.dedekind-real-numbers.md)-valued function `p` on the vector
+space such that `p (x + y) ≤ p x + p y` for all `x` and `y` in `V`, and
+`p (c * x) = |c| * p x` for all real numbers `c` and `x` in `V`.
+
+These conditions imply that `p 0 = 0` and that `p` is nonnegative.
+
+A real vector space equipped with such a seminorm is called a
+{{#concept "seminormed space" WD="seminormed space" WDID=Q63793693 Agda=Seminormed-ℝ-Vector-Space}}.
+A seminormed space has an induced
+[pseudometric structure](metric-spaces.pseudometric-spaces.md) defined by the
+neighborhood relation that `v` and `w` are in an `ε`-neighborhood of each other
+if `p (v - w) ≤ ε`.
+
+## Definition
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : ℝ-Vector-Space l1 l2)
+ (p : type-ℝ-Vector-Space V → ℝ l1)
+ where
+
+ is-triangular-prop-seminorm-ℝ-Vector-Space : Prop (l1 ⊔ l2)
+ is-triangular-prop-seminorm-ℝ-Vector-Space =
+ Π-Prop
+ ( type-ℝ-Vector-Space V)
+ ( λ x →
+ Π-Prop
+ ( type-ℝ-Vector-Space V)
+ ( λ y → leq-prop-ℝ (p (add-ℝ-Vector-Space V x y)) (p x +ℝ p y)))
+
+ is-triangular-seminorm-ℝ-Vector-Space : UU (l1 ⊔ l2)
+ is-triangular-seminorm-ℝ-Vector-Space =
+ type-Prop is-triangular-prop-seminorm-ℝ-Vector-Space
+
+ is-absolutely-homogeneous-prop-seminorm-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2)
+ is-absolutely-homogeneous-prop-seminorm-ℝ-Vector-Space =
+ Π-Prop
+ ( ℝ l1)
+ ( λ c →
+ Π-Prop
+ ( type-ℝ-Vector-Space V)
+ ( λ x →
+ Id-Prop
+ ( ℝ-Set l1)
+ ( p (mul-ℝ-Vector-Space V c x))
+ ( abs-ℝ c *ℝ p x)))
+
+ is-absolutely-homogeneous-seminorm-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2)
+ is-absolutely-homogeneous-seminorm-ℝ-Vector-Space =
+ type-Prop is-absolutely-homogeneous-prop-seminorm-ℝ-Vector-Space
+
+ is-seminorm-prop-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2)
+ is-seminorm-prop-ℝ-Vector-Space =
+ is-triangular-prop-seminorm-ℝ-Vector-Space ∧
+ is-absolutely-homogeneous-prop-seminorm-ℝ-Vector-Space
+
+ is-seminorm-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2)
+ is-seminorm-ℝ-Vector-Space = type-Prop is-seminorm-prop-ℝ-Vector-Space
+
+seminorm-ℝ-Vector-Space :
+ {l1 l2 : Level} → ℝ-Vector-Space l1 l2 → UU (lsuc l1 ⊔ l2)
+seminorm-ℝ-Vector-Space V =
+ type-subtype (is-seminorm-prop-ℝ-Vector-Space V)
+
+Seminormed-ℝ-Vector-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
+Seminormed-ℝ-Vector-Space l1 l2 =
+ Σ (ℝ-Vector-Space l1 l2) seminorm-ℝ-Vector-Space
+```
+
+## Properties
+
+### Vector space properties
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : Seminormed-ℝ-Vector-Space l1 l2)
+ where
+
+ vector-space-Seminormed-ℝ-Vector-Space : ℝ-Vector-Space l1 l2
+ vector-space-Seminormed-ℝ-Vector-Space = pr1 V
+
+ set-Seminormed-ℝ-Vector-Space : Set l2
+ set-Seminormed-ℝ-Vector-Space =
+ set-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ type-Seminormed-ℝ-Vector-Space : UU l2
+ type-Seminormed-ℝ-Vector-Space =
+ type-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ seminorm-Seminormed-ℝ-Vector-Space :
+ seminorm-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+ seminorm-Seminormed-ℝ-Vector-Space = pr2 V
+
+ map-seminorm-Seminormed-ℝ-Vector-Space :
+ type-Seminormed-ℝ-Vector-Space → ℝ l1
+ map-seminorm-Seminormed-ℝ-Vector-Space =
+ pr1 seminorm-Seminormed-ℝ-Vector-Space
+
+ zero-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space
+ zero-Seminormed-ℝ-Vector-Space =
+ zero-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ is-zero-prop-Seminormed-ℝ-Vector-Space :
+ subtype l2 type-Seminormed-ℝ-Vector-Space
+ is-zero-prop-Seminormed-ℝ-Vector-Space =
+ is-zero-prop-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ is-zero-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space → UU l2
+ is-zero-Seminormed-ℝ-Vector-Space =
+ is-zero-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ add-Seminormed-ℝ-Vector-Space :
+ type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space →
+ type-Seminormed-ℝ-Vector-Space
+ add-Seminormed-ℝ-Vector-Space =
+ add-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ mul-Seminormed-ℝ-Vector-Space :
+ ℝ l1 → type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space
+ mul-Seminormed-ℝ-Vector-Space =
+ mul-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ neg-Seminormed-ℝ-Vector-Space :
+ type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space
+ neg-Seminormed-ℝ-Vector-Space =
+ neg-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ diff-Seminormed-ℝ-Vector-Space :
+ type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space →
+ type-Seminormed-ℝ-Vector-Space
+ diff-Seminormed-ℝ-Vector-Space v w =
+ add-Seminormed-ℝ-Vector-Space v (neg-Seminormed-ℝ-Vector-Space w)
+
+ right-inverse-law-add-Seminormed-ℝ-Vector-Space :
+ (v : type-Seminormed-ℝ-Vector-Space) →
+ add-Seminormed-ℝ-Vector-Space v (neg-Seminormed-ℝ-Vector-Space v) =
+ zero-Seminormed-ℝ-Vector-Space
+ right-inverse-law-add-Seminormed-ℝ-Vector-Space =
+ right-inverse-law-add-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ add-diff-Seminormed-ℝ-Vector-Space :
+ (v w x : type-Seminormed-ℝ-Vector-Space) →
+ add-Seminormed-ℝ-Vector-Space
+ ( diff-Seminormed-ℝ-Vector-Space v w)
+ ( diff-Seminormed-ℝ-Vector-Space w x) =
+ diff-Seminormed-ℝ-Vector-Space v x
+ add-diff-Seminormed-ℝ-Vector-Space =
+ add-diff-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ neg-neg-Seminormed-ℝ-Vector-Space :
+ (v : type-Seminormed-ℝ-Vector-Space) →
+ neg-Seminormed-ℝ-Vector-Space (neg-Seminormed-ℝ-Vector-Space v) = v
+ neg-neg-Seminormed-ℝ-Vector-Space =
+ neg-neg-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ left-zero-law-mul-Seminormed-ℝ-Vector-Space :
+ (v : type-Seminormed-ℝ-Vector-Space) →
+ mul-Seminormed-ℝ-Vector-Space (raise-ℝ l1 zero-ℝ) v =
+ zero-Seminormed-ℝ-Vector-Space
+ left-zero-law-mul-Seminormed-ℝ-Vector-Space =
+ left-zero-law-mul-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ mul-neg-one-Seminormed-ℝ-Vector-Space :
+ (v : type-Seminormed-ℝ-Vector-Space) →
+ mul-Seminormed-ℝ-Vector-Space (neg-ℝ (raise-ℝ l1 one-ℝ)) v =
+ neg-Seminormed-ℝ-Vector-Space v
+ mul-neg-one-Seminormed-ℝ-Vector-Space =
+ mul-neg-one-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space
+
+ distributive-neg-diff-Seminormed-ℝ-Vector-Space :
+ (v w : type-Seminormed-ℝ-Vector-Space) →
+ neg-Seminormed-ℝ-Vector-Space (diff-Seminormed-ℝ-Vector-Space v w) =
+ diff-Seminormed-ℝ-Vector-Space w v
+ distributive-neg-diff-Seminormed-ℝ-Vector-Space =
+ neg-right-subtraction-Ab
+ ( ab-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space)
+
+ triangular-Seminormed-ℝ-Vector-Space :
+ (v w : type-Seminormed-ℝ-Vector-Space) →
+ leq-ℝ
+ ( map-seminorm-Seminormed-ℝ-Vector-Space
+ ( add-Seminormed-ℝ-Vector-Space v w))
+ ( map-seminorm-Seminormed-ℝ-Vector-Space v +ℝ
+ map-seminorm-Seminormed-ℝ-Vector-Space w)
+ triangular-Seminormed-ℝ-Vector-Space =
+ pr1 (pr2 seminorm-Seminormed-ℝ-Vector-Space)
+
+ is-absolutely-homogeneous-Seminormed-ℝ-Vector-Space :
+ (c : ℝ l1) (v : type-Seminormed-ℝ-Vector-Space) →
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( mul-Seminormed-ℝ-Vector-Space c v) =
+ abs-ℝ c *ℝ map-seminorm-Seminormed-ℝ-Vector-Space v
+ is-absolutely-homogeneous-Seminormed-ℝ-Vector-Space =
+ pr2 (pr2 seminorm-Seminormed-ℝ-Vector-Space)
+
+ dist-Seminormed-ℝ-Vector-Space :
+ type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space → ℝ l1
+ dist-Seminormed-ℝ-Vector-Space v w =
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( diff-Seminormed-ℝ-Vector-Space v w)
+```
+
+### The seminorm of the zero vector in a seminormed real vector space is zero
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : Seminormed-ℝ-Vector-Space l1 l2)
+ where
+
+ abstract
+ is-zero-seminorm-zero-Seminormed-ℝ-Vector-Space :
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( zero-Seminormed-ℝ-Vector-Space V) =
+ raise-ℝ l1 zero-ℝ
+ is-zero-seminorm-zero-Seminormed-ℝ-Vector-Space =
+ eq-sim-ℝ
+ ( similarity-reasoning-ℝ
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( zero-Seminormed-ℝ-Vector-Space V)
+ ~ℝ
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( mul-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( raise-ℝ l1 zero-ℝ)
+ ( zero-Seminormed-ℝ-Vector-Space V))
+ by
+ sim-eq-ℝ
+ ( ap
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V)
+ ( inv (left-zero-law-mul-Seminormed-ℝ-Vector-Space V _)))
+ ~ℝ
+ ( abs-ℝ (raise-ℝ l1 zero-ℝ)) *ℝ
+ ( map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( zero-Seminormed-ℝ-Vector-Space V))
+ by
+ sim-eq-ℝ
+ ( is-absolutely-homogeneous-Seminormed-ℝ-Vector-Space V _ _)
+ ~ℝ
+ ( abs-ℝ zero-ℝ) *ℝ
+ ( map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( zero-Seminormed-ℝ-Vector-Space V))
+ by
+ preserves-sim-right-mul-ℝ _ _ _
+ ( preserves-sim-abs-ℝ (sim-raise-ℝ' l1 zero-ℝ))
+ ~ℝ
+ ( zero-ℝ) *ℝ
+ ( map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( zero-Seminormed-ℝ-Vector-Space V))
+ by sim-eq-ℝ (ap-mul-ℝ abs-zero-ℝ refl)
+ ~ℝ zero-ℝ
+ by left-zero-law-mul-ℝ _
+ ~ℝ raise-ℝ l1 zero-ℝ
+ by sim-raise-ℝ l1 zero-ℝ)
+
+ is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space :
+ (v : type-Seminormed-ℝ-Vector-Space V) →
+ dist-Seminormed-ℝ-Vector-Space V v v = raise-ℝ l1 zero-ℝ
+ is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space v =
+ ( ap
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V)
+ ( right-inverse-law-add-Seminormed-ℝ-Vector-Space V v)) ∙
+ ( is-zero-seminorm-zero-Seminormed-ℝ-Vector-Space)
+```
+
+### The seminorm of the negation of a vector is equal to the seminorm of the vector
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : Seminormed-ℝ-Vector-Space l1 l2)
+ where
+
+ abstract
+ seminorm-neg-Seminormed-ℝ-Vector-Space :
+ (v : type-Seminormed-ℝ-Vector-Space V) →
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( neg-Seminormed-ℝ-Vector-Space V v) =
+ map-seminorm-Seminormed-ℝ-Vector-Space V v
+ seminorm-neg-Seminormed-ℝ-Vector-Space v =
+ eq-sim-ℝ
+ ( similarity-reasoning-ℝ
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( neg-Seminormed-ℝ-Vector-Space V v)
+ ~ℝ
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( mul-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( neg-ℝ (raise-ℝ l1 one-ℝ))
+ ( v))
+ by
+ sim-eq-ℝ
+ ( ap
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V)
+ ( inv (mul-neg-one-Seminormed-ℝ-Vector-Space V v)))
+ ~ℝ
+ ( abs-ℝ (neg-ℝ (raise-ℝ l1 one-ℝ))) *ℝ
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V v)
+ by
+ sim-eq-ℝ
+ ( is-absolutely-homogeneous-Seminormed-ℝ-Vector-Space V _ _)
+ ~ℝ
+ ( abs-ℝ (raise-ℝ l1 one-ℝ)) *ℝ
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V v)
+ by sim-eq-ℝ (ap-mul-ℝ (abs-neg-ℝ _) refl)
+ ~ℝ abs-ℝ one-ℝ *ℝ map-seminorm-Seminormed-ℝ-Vector-Space V v
+ by
+ preserves-sim-right-mul-ℝ _ _ _
+ ( preserves-sim-abs-ℝ (sim-raise-ℝ' l1 one-ℝ))
+ ~ℝ one-ℝ *ℝ map-seminorm-Seminormed-ℝ-Vector-Space V v
+ by
+ sim-eq-ℝ (ap-mul-ℝ (abs-real-ℝ⁺ one-ℝ⁺) refl)
+ ~ℝ map-seminorm-Seminormed-ℝ-Vector-Space V v
+ by sim-eq-ℝ (left-unit-law-mul-ℝ _))
+
+ commutative-dist-Seminormed-ℝ-Vector-Space :
+ (v w : type-Seminormed-ℝ-Vector-Space V) →
+ dist-Seminormed-ℝ-Vector-Space V v w =
+ dist-Seminormed-ℝ-Vector-Space V w v
+ commutative-dist-Seminormed-ℝ-Vector-Space v w =
+ ( inv
+ ( ap
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V)
+ ( distributive-neg-diff-Seminormed-ℝ-Vector-Space V w v))) ∙
+ ( seminorm-neg-Seminormed-ℝ-Vector-Space _)
+```
+
+### The distance function on a seminormed vector space satisfies the triangle inequality
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : Seminormed-ℝ-Vector-Space l1 l2)
+ where
+
+ abstract
+ triangular-dist-Seminormed-ℝ-Vector-Space :
+ (v w x : type-Seminormed-ℝ-Vector-Space V) →
+ leq-ℝ
+ ( dist-Seminormed-ℝ-Vector-Space V v x)
+ ( dist-Seminormed-ℝ-Vector-Space V v w +ℝ
+ dist-Seminormed-ℝ-Vector-Space V w x)
+ triangular-dist-Seminormed-ℝ-Vector-Space v w x =
+ let
+ open inequality-reasoning-Large-Poset ℝ-Large-Poset
+ in
+ chain-of-inequalities
+ dist-Seminormed-ℝ-Vector-Space V v x
+ ≤ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( add-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( diff-Seminormed-ℝ-Vector-Space V v w)
+ ( diff-Seminormed-ℝ-Vector-Space V w x))
+ by
+ leq-eq-ℝ
+ ( ap
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V)
+ ( inv (add-diff-Seminormed-ℝ-Vector-Space V v w x)))
+ ≤ ( dist-Seminormed-ℝ-Vector-Space V v w) +ℝ
+ ( dist-Seminormed-ℝ-Vector-Space V w x)
+ by triangular-Seminormed-ℝ-Vector-Space V _ _
+```
+
+### The seminorm of a vector in a seminormed vector space is nonnegative
+
+```agda
+module _
+ {l1 l2 : Level}
+ (V : Seminormed-ℝ-Vector-Space l1 l2)
+ where
+
+ abstract
+ is-nonnegative-seminorm-Seminormed-ℝ-Vector-Space :
+ (v : type-Seminormed-ℝ-Vector-Space V) →
+ is-nonnegative-ℝ (map-seminorm-Seminormed-ℝ-Vector-Space V v)
+ is-nonnegative-seminorm-Seminormed-ℝ-Vector-Space v =
+ let
+ open inequality-reasoning-Large-Poset ℝ-Large-Poset
+ in
+ reflects-leq-left-mul-ℝ⁺
+ ( positive-real-ℕ⁺ (2 , λ ()))
+ ( zero-ℝ)
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V v)
+ ( chain-of-inequalities
+ real-ℝ⁺ (positive-real-ℕ⁺ (2 , (λ ()))) *ℝ zero-ℝ
+ ≤ zero-ℝ
+ by leq-sim-ℝ (right-zero-law-mul-ℝ _)
+ ≤ raise-ℝ l1 zero-ℝ
+ by leq-sim-ℝ (sim-raise-ℝ l1 zero-ℝ)
+ ≤ dist-Seminormed-ℝ-Vector-Space V v v
+ by
+ leq-eq-ℝ
+ ( inv (is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space V v))
+ ≤ ( map-seminorm-Seminormed-ℝ-Vector-Space V v) +ℝ
+ ( map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( neg-Seminormed-ℝ-Vector-Space V v))
+ by triangular-Seminormed-ℝ-Vector-Space V _ _
+ ≤ ( map-seminorm-Seminormed-ℝ-Vector-Space V v) +ℝ
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V v)
+ by
+ leq-eq-ℝ
+ ( ap-add-ℝ
+ ( refl)
+ ( seminorm-neg-Seminormed-ℝ-Vector-Space V v))
+ ≤ real-ℕ 2 *ℝ map-seminorm-Seminormed-ℝ-Vector-Space V v
+ by leq-eq-ℝ (inv (left-mul-real-ℕ 2 _)))
+
+ nonnegative-seminorm-Seminormed-ℝ-Vector-Space :
+ type-Seminormed-ℝ-Vector-Space V → ℝ⁰⁺ l1
+ nonnegative-seminorm-Seminormed-ℝ-Vector-Space v =
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V v ,
+ is-nonnegative-seminorm-Seminormed-ℝ-Vector-Space v)
+```
+
+### The pseudometric space induced by a seminorm
+
+```agda
+module _
+ {l1 l2 : Level} (V : Seminormed-ℝ-Vector-Space l1 l2)
+ where
+
+ nonnegative-dist-Seminormed-ℝ-Vector-Space :
+ type-Seminormed-ℝ-Vector-Space V → type-Seminormed-ℝ-Vector-Space V → ℝ⁰⁺ l1
+ nonnegative-dist-Seminormed-ℝ-Vector-Space v w =
+ ( dist-Seminormed-ℝ-Vector-Space V v w ,
+ is-nonnegative-seminorm-Seminormed-ℝ-Vector-Space V _)
+
+ neighborhood-prop-Seminormed-ℝ-Vector-Space :
+ ℚ⁺ → Relation-Prop l1 (type-Seminormed-ℝ-Vector-Space V)
+ neighborhood-prop-Seminormed-ℝ-Vector-Space ε v w =
+ leq-prop-ℝ
+ ( dist-Seminormed-ℝ-Vector-Space V v w)
+ ( real-ℚ⁺ ε)
+
+ neighborhood-Seminormed-ℝ-Vector-Space :
+ ℚ⁺ → Relation l1 (type-Seminormed-ℝ-Vector-Space V)
+ neighborhood-Seminormed-ℝ-Vector-Space d =
+ type-Relation-Prop (neighborhood-prop-Seminormed-ℝ-Vector-Space d)
+
+ abstract
+ refl-neighborhood-Seminormed-ℝ-Vector-Space :
+ (ε : ℚ⁺) (v : type-Seminormed-ℝ-Vector-Space V) →
+ neighborhood-Seminormed-ℝ-Vector-Space ε v v
+ refl-neighborhood-Seminormed-ℝ-Vector-Space ε v =
+ leq-le-ℝ
+ ( preserves-le-left-sim-ℝ
+ ( real-ℚ⁺ ε)
+ ( zero-ℝ)
+ ( dist-Seminormed-ℝ-Vector-Space V v v)
+ ( similarity-reasoning-ℝ
+ zero-ℝ
+ ~ℝ raise-ℝ l1 zero-ℝ
+ by sim-raise-ℝ l1 zero-ℝ
+ ~ℝ
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( zero-Seminormed-ℝ-Vector-Space V)
+ by
+ sim-eq-ℝ
+ ( inv (is-zero-seminorm-zero-Seminormed-ℝ-Vector-Space V))
+ ~ℝ
+ map-seminorm-Seminormed-ℝ-Vector-Space
+ ( V)
+ ( diff-Seminormed-ℝ-Vector-Space V v v)
+ by
+ sim-eq-ℝ
+ ( ap
+ ( map-seminorm-Seminormed-ℝ-Vector-Space V)
+ ( inv
+ ( right-inverse-law-add-Seminormed-ℝ-Vector-Space V v))))
+ ( preserves-is-positive-real-ℚ (is-positive-rational-ℚ⁺ ε)))
+
+ symmetric-neighborhood-Seminormed-ℝ-Vector-Space :
+ (d : ℚ⁺) (v w : type-Seminormed-ℝ-Vector-Space V) →
+ neighborhood-Seminormed-ℝ-Vector-Space d v w →
+ neighborhood-Seminormed-ℝ-Vector-Space d w v
+ symmetric-neighborhood-Seminormed-ℝ-Vector-Space d v w =
+ tr
+ ( λ z → leq-ℝ z (real-ℚ⁺ d))
+ ( commutative-dist-Seminormed-ℝ-Vector-Space V v w)
+
+ triangular-neighborhood-Seminormed-ℝ-Vector-Space :
+ (v w x : type-Seminormed-ℝ-Vector-Space V) (d1 d2 : ℚ⁺) →
+ neighborhood-Seminormed-ℝ-Vector-Space d2 w x →
+ neighborhood-Seminormed-ℝ-Vector-Space d1 v w →
+ neighborhood-Seminormed-ℝ-Vector-Space (d1 +ℚ⁺ d2) v x
+ triangular-neighborhood-Seminormed-ℝ-Vector-Space
+ v w x d1 d2 Nd2wx Nd1vw =
+ let
+ open inequality-reasoning-Large-Poset ℝ-Large-Poset
+ in
+ chain-of-inequalities
+ dist-Seminormed-ℝ-Vector-Space V v x
+ ≤ ( dist-Seminormed-ℝ-Vector-Space V v w) +ℝ
+ ( dist-Seminormed-ℝ-Vector-Space V w x)
+ by triangular-dist-Seminormed-ℝ-Vector-Space V v w x
+ ≤ real-ℚ⁺ d1 +ℝ real-ℚ⁺ d2
+ by preserves-leq-add-ℝ Nd1vw Nd2wx
+ ≤ real-ℚ⁺ (d1 +ℚ⁺ d2)
+ by leq-eq-ℝ (add-real-ℚ _ _)
+
+ saturated-neighborhood-Seminormed-ℝ-Vector-Space :
+ (d : ℚ⁺) (v w : type-Seminormed-ℝ-Vector-Space V) →
+ ((δ : ℚ⁺) → neighborhood-Seminormed-ℝ-Vector-Space (d +ℚ⁺ δ) v w) →
+ neighborhood-Seminormed-ℝ-Vector-Space d v w
+ saturated-neighborhood-Seminormed-ℝ-Vector-Space d v w H =
+ saturated-leq-ℝ⁰⁺
+ ( nonnegative-dist-Seminormed-ℝ-Vector-Space v w)
+ ( nonnegative-real-ℚ⁺ d)
+ ( λ δ →
+ inv-tr
+ ( leq-ℝ (dist-Seminormed-ℝ-Vector-Space V v w))
+ ( add-real-ℚ _ _)
+ ( H δ))
+
+ pseudometric-structure-Seminormed-ℝ-Vector-Space :
+ Pseudometric-Structure l1 (type-Seminormed-ℝ-Vector-Space V)
+ pseudometric-structure-Seminormed-ℝ-Vector-Space =
+ ( neighborhood-prop-Seminormed-ℝ-Vector-Space ,
+ refl-neighborhood-Seminormed-ℝ-Vector-Space ,
+ symmetric-neighborhood-Seminormed-ℝ-Vector-Space ,
+ triangular-neighborhood-Seminormed-ℝ-Vector-Space ,
+ saturated-neighborhood-Seminormed-ℝ-Vector-Space)
+
+ pseudometric-space-Seminormed-ℝ-Vector-Space : Pseudometric-Space l2 l1
+ pseudometric-space-Seminormed-ℝ-Vector-Space =
+ ( type-Seminormed-ℝ-Vector-Space V ,
+ pseudometric-structure-Seminormed-ℝ-Vector-Space)
+```
+
+### The real numbers are a seminormed vector space over themselves with seminorm `x ↦ |x|`
+
+```agda
+seminormed-real-vector-space-ℝ :
+ (l : Level) → Seminormed-ℝ-Vector-Space l (lsuc l)
+seminormed-real-vector-space-ℝ l =
+ ( real-vector-space-ℝ l , abs-ℝ , triangle-inequality-abs-ℝ , abs-mul-ℝ)
+```
diff --git a/src/metric-spaces/metrics-of-metric-spaces.lagda.md b/src/metric-spaces/metrics-of-metric-spaces.lagda.md
index ea6ba29759..f3b1b5bcff 100644
--- a/src/metric-spaces/metrics-of-metric-spaces.lagda.md
+++ b/src/metric-spaces/metrics-of-metric-spaces.lagda.md
@@ -21,13 +21,17 @@ open import foundation.transport-along-identifications
open import foundation.universe-levels
open import metric-spaces.equality-of-metric-spaces
+open import metric-spaces.functions-metric-spaces
+open import metric-spaces.isometries-metric-spaces
open import metric-spaces.located-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.metrics
+open import metric-spaces.short-functions-metric-spaces
open import real-numbers.addition-nonnegative-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.inequality-nonnegative-real-numbers
+open import real-numbers.inequality-real-numbers
open import real-numbers.nonnegative-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.saturation-inequality-nonnegative-real-numbers
@@ -109,7 +113,7 @@ module _
is-reflexive-is-metric-of-Metric-Space :
is-reflexive-distance-function (set-Metric-Space M) ρ
is-reflexive-is-metric-of-Metric-Space x =
- sim-zero-le-positive-rational-ℝ⁰⁺
+ sim-zero-leq-positive-rational-ℝ⁰⁺
( ρ x x)
( λ ε →
forward-implication
@@ -266,6 +270,109 @@ module _
( isometric-equiv-metric-is-metric-of-Metric-Space M ρ is-metric-M-ρ)
```
+### If `M` and `N` are metric spaces with metrics `dM` and `dN`, a function `f : M → N` is an isometry if and only if `dM x y` is similar to `dN (f x) (f y)` for all `x, y : M`
+
+```agda
+module _
+ {l1 l2 l3 l4 l5 l6 : Level}
+ (M : Metric-Space l1 l2)
+ (N : Metric-Space l3 l4)
+ (dM : distance-function l5 (set-Metric-Space M))
+ (dN : distance-function l6 (set-Metric-Space N))
+ (is-metric-dM : is-metric-of-Metric-Space M dM)
+ (is-metric-dN : is-metric-of-Metric-Space N dN)
+ (f : type-function-Metric-Space M N)
+ where
+
+ abstract
+ is-isometry-sim-metric-Metric-Space :
+ ((x y : type-Metric-Space M) → sim-ℝ⁰⁺ (dM x y) (dN (f x) (f y))) →
+ is-isometry-Metric-Space M N f
+ is-isometry-sim-metric-Metric-Space H d x y =
+ logical-equivalence-reasoning
+ neighborhood-Metric-Space M d x y
+ ↔ leq-ℝ (real-ℝ⁰⁺ (dM x y)) (real-ℚ⁺ d)
+ by is-metric-dM d x y
+ ↔ leq-ℝ (real-ℝ⁰⁺ (dN (f x) (f y))) (real-ℚ⁺ d)
+ by leq-iff-left-sim-ℝ (H x y)
+ ↔ neighborhood-Metric-Space N d (f x) (f y)
+ by inv-iff (is-metric-dN d (f x) (f y))
+
+ sim-metric-is-isometry-Metric-Space :
+ is-isometry-Metric-Space M N f →
+ (x y : type-Metric-Space M) →
+ sim-ℝ⁰⁺ (dM x y) (dN (f x) (f y))
+ sim-metric-is-isometry-Metric-Space H x y =
+ sim-leq-same-positive-rational-ℝ⁰⁺
+ ( dM x y)
+ ( dN (f x) (f y))
+ ( λ d →
+ logical-equivalence-reasoning
+ leq-ℝ (real-ℝ⁰⁺ (dM x y)) (real-ℚ⁺ d)
+ ↔ neighborhood-Metric-Space M d x y
+ by inv-iff (is-metric-dM d x y)
+ ↔ neighborhood-Metric-Space N d (f x) (f y)
+ by H d x y
+ ↔ leq-ℝ (real-ℝ⁰⁺ (dN (f x) (f y))) (real-ℚ⁺ d)
+ by is-metric-dN d (f x) (f y))
+
+ is-isometry-iff-sim-metric-Metric-Space :
+ is-isometry-Metric-Space M N f ↔
+ ((x y : type-Metric-Space M) → sim-ℝ⁰⁺ (dM x y) (dN (f x) (f y)))
+ is-isometry-iff-sim-metric-Metric-Space =
+ ( sim-metric-is-isometry-Metric-Space ,
+ is-isometry-sim-metric-Metric-Space)
+```
+
+### If `M` and `N` are metric spaces with metrics `dM` and `dN`, a function `f : M → N` is short if and only if `dN (f x) (f y) ≤ dM x y` for all `x, y : M`
+
+```agda
+module _
+ {l1 l2 l3 l4 l5 l6 : Level}
+ (M : Metric-Space l1 l2)
+ (N : Metric-Space l3 l4)
+ (dM : distance-function l5 (set-Metric-Space M))
+ (dN : distance-function l6 (set-Metric-Space N))
+ (is-metric-dM : is-metric-of-Metric-Space M dM)
+ (is-metric-dN : is-metric-of-Metric-Space N dN)
+ (f : type-function-Metric-Space M N)
+ where
+
+ abstract
+ is-short-function-leq-metric-Metric-Space :
+ ((x y : type-Metric-Space M) → leq-ℝ⁰⁺ (dN (f x) (f y)) (dM x y)) →
+ is-short-function-Metric-Space M N f
+ is-short-function-leq-metric-Metric-Space H d x y Ndxy =
+ backward-implication
+ ( is-metric-dN d (f x) (f y))
+ ( transitive-leq-ℝ
+ ( real-ℝ⁰⁺ (dN (f x) (f y)))
+ ( real-ℝ⁰⁺ (dM x y))
+ ( real-ℚ⁺ d)
+ ( forward-implication (is-metric-dM d x y) Ndxy)
+ ( H x y))
+
+ leq-metric-is-short-function-Metric-Space :
+ is-short-function-Metric-Space M N f →
+ (x y : type-Metric-Space M) →
+ leq-ℝ⁰⁺ (dN (f x) (f y)) (dM x y)
+ leq-metric-is-short-function-Metric-Space H x y =
+ leq-leq-positive-rational-ℝ⁰⁺
+ ( dN (f x) (f y))
+ ( dM x y)
+ ( λ d dMxy≤d →
+ forward-implication
+ ( is-metric-dN d (f x) (f y))
+ ( H d x y (backward-implication (is-metric-dM d x y) dMxy≤d)))
+
+ is-short-function-iff-leq-metric-Metric-Space :
+ is-short-function-Metric-Space M N f ↔
+ ((x y : type-Metric-Space M) → leq-ℝ⁰⁺ (dN (f x) (f y)) (dM x y))
+ is-short-function-iff-leq-metric-Metric-Space =
+ ( leq-metric-is-short-function-Metric-Space ,
+ is-short-function-leq-metric-Metric-Space)
+```
+
## See also
- [Metrics of metric spaces are uniformly continuous](metric-spaces.metrics-of-metric-spaces-are-uniformly-continuous.md)
diff --git a/src/metric-spaces/metrics.lagda.md b/src/metric-spaces/metrics.lagda.md
index 6ed22735b3..67cc1c541a 100644
--- a/src/metric-spaces/metrics.lagda.md
+++ b/src/metric-spaces/metrics.lagda.md
@@ -297,7 +297,7 @@ module _
is-tight-Pseudometric-Space (pseudometric-space-Metric X μ)
is-tight-pseudometric-space-Metric x y H =
is-extensional-dist-Metric X μ x y
- ( sim-zero-le-positive-rational-ℝ⁰⁺ (dist-Metric X μ x y) H)
+ ( sim-zero-leq-positive-rational-ℝ⁰⁺ (dist-Metric X μ x y) H)
```
### The pseudometric space induced by a metric is extensional
diff --git a/src/order-theory.lagda.md b/src/order-theory.lagda.md
index 538d9ef259..c4bcb8c5a7 100644
--- a/src/order-theory.lagda.md
+++ b/src/order-theory.lagda.md
@@ -103,6 +103,7 @@ open import order-theory.maximal-chains-preorders public
open import order-theory.meet-semilattices public
open import order-theory.meet-suplattices public
open import order-theory.meets-finite-families-meet-semilattices public
+open import order-theory.monotonic-sequences-posets public
open import order-theory.nuclei-large-locales public
open import order-theory.opposite-large-posets public
open import order-theory.opposite-large-preorders public
diff --git a/src/order-theory/monotonic-sequences-posets.lagda.md b/src/order-theory/monotonic-sequences-posets.lagda.md
new file mode 100644
index 0000000000..048129132b
--- /dev/null
+++ b/src/order-theory/monotonic-sequences-posets.lagda.md
@@ -0,0 +1,84 @@
+# Monotonic sequences in posets
+
+```agda
+module order-theory.monotonic-sequences-posets where
+```
+
+Imports
+
+```agda
+open import elementary-number-theory.addition-natural-numbers
+open import elementary-number-theory.inequality-natural-numbers
+open import elementary-number-theory.natural-numbers
+
+open import foundation.dependent-pair-types
+open import foundation.identity-types
+open import foundation.propositions
+open import foundation.subtypes
+open import foundation.transport-along-identifications
+open import foundation.universe-levels
+
+open import lists.sequences
+
+open import order-theory.order-preserving-maps-posets
+open import order-theory.posets
+```
+
+
+
+## Idea
+
+A
+{{#concept "monotonic sequence" Agda=monotonic-sequence-Poset Disambiguation="in a poset"}}
+in a [poset](order-theory.posets.md) `P` is a [sequence](lists.sequences.md)
+`aₙ` such that whenever `m ≤ n`, `aₘ ≤ aₙ`.
+
+## Definition
+
+```agda
+module _
+ {l1 l2 : Level}
+ (P : Poset l1 l2)
+ where
+
+ is-monotonic-prop-sequence-Poset : subtype l2 (sequence (type-Poset P))
+ is-monotonic-prop-sequence-Poset a = preserves-order-prop-Poset ℕ-Poset P a
+
+ is-monotonic-sequence-Poset : sequence (type-Poset P) → UU l2
+ is-monotonic-sequence-Poset a = type-Prop (is-monotonic-prop-sequence-Poset a)
+```
+
+## Properties
+
+### If `aₙ ≤ aₙ₊₁` for all `n`, then the sequence `aₙ` is monotonic
+
+```agda
+module _
+ {l1 l2 : Level}
+ (P : Poset l1 l2)
+ where
+
+ abstract
+ is-monotonic-sequence-is-increasing-Poset :
+ (a : sequence (type-Poset P)) →
+ ((n : ℕ) → leq-Poset P (a n) (a (succ-ℕ n))) →
+ is-monotonic-sequence-Poset P a
+ is-monotonic-sequence-is-increasing-Poset a H m n m≤n =
+ let
+ (l , l+m=n) = subtraction-leq-ℕ m n m≤n
+ in
+ tr
+ ( λ k → leq-Poset P (a m) (a k))
+ ( commutative-add-ℕ m l ∙ l+m=n)
+ ( lemma l)
+ where
+ lemma : (k : ℕ) → leq-Poset P (a m) (a (m +ℕ k))
+ lemma 0 = refl-leq-Poset P (a m)
+ lemma (succ-ℕ k) =
+ transitive-leq-Poset P
+ ( a m)
+ ( a (m +ℕ k))
+ ( a (m +ℕ succ-ℕ k))
+ ( H (m +ℕ k))
+ ( lemma k)
+```
diff --git a/src/real-numbers.lagda.md b/src/real-numbers.lagda.md
index 26bb420996..eb9471d10b 100644
--- a/src/real-numbers.lagda.md
+++ b/src/real-numbers.lagda.md
@@ -22,7 +22,6 @@ open import real-numbers.binary-minimum-real-numbers public
open import real-numbers.cauchy-completeness-dedekind-real-numbers public
open import real-numbers.cauchy-sequences-real-numbers public
open import real-numbers.closed-intervals-real-numbers public
-open import real-numbers.convergent-series-real-numbers public
open import real-numbers.dedekind-real-numbers public
open import real-numbers.difference-real-numbers public
open import real-numbers.distance-real-numbers public
@@ -58,7 +57,7 @@ open import real-numbers.maximum-finite-families-real-numbers public
open import real-numbers.maximum-inhabited-finitely-enumerable-subsets-real-numbers public
open import real-numbers.maximum-lower-dedekind-real-numbers public
open import real-numbers.maximum-upper-dedekind-real-numbers public
-open import real-numbers.metric-abelian-group-of-real-numbers public
+open import real-numbers.metric-additive-group-of-real-numbers public
open import real-numbers.metric-space-of-nonnegative-real-numbers public
open import real-numbers.metric-space-of-real-numbers public
open import real-numbers.minimum-finite-families-real-numbers public
@@ -92,7 +91,6 @@ open import real-numbers.real-numbers-from-upper-dedekind-real-numbers public
open import real-numbers.real-sequences-approximating-zero public
open import real-numbers.saturation-inequality-nonnegative-real-numbers public
open import real-numbers.saturation-inequality-real-numbers public
-open import real-numbers.series-real-numbers public
open import real-numbers.short-function-binary-maximum-real-numbers public
open import real-numbers.short-function-binary-minimum-real-numbers public
open import real-numbers.similarity-nonnegative-real-numbers public
diff --git a/src/real-numbers/absolute-value-real-numbers.lagda.md b/src/real-numbers/absolute-value-real-numbers.lagda.md
index 6e56c70a08..120e455dd4 100644
--- a/src/real-numbers/absolute-value-real-numbers.lagda.md
+++ b/src/real-numbers/absolute-value-real-numbers.lagda.md
@@ -14,6 +14,7 @@ open import elementary-number-theory.rational-numbers
open import elementary-number-theory.squares-rational-numbers
open import foundation.action-on-identifications-functions
+open import foundation.binary-transport
open import foundation.dependent-pair-types
open import foundation.disjunction
open import foundation.empty-types
@@ -39,6 +40,7 @@ open import real-numbers.negative-real-numbers
open import real-numbers.nonnegative-real-numbers
open import real-numbers.positive-and-negative-real-numbers
open import real-numbers.positive-real-numbers
+open import real-numbers.raising-universe-levels-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.saturation-inequality-real-numbers
open import real-numbers.similarity-real-numbers
@@ -90,6 +92,23 @@ abstract opaque
preserves-sim-max-ℝ _ _ x~x' _ _ (preserves-sim-neg-ℝ x~x')
```
+### The absolute value commutes with raising the universe level of a real number
+
+```agda
+abstract
+ abs-raise-ℝ :
+ {l1 : Level} (l2 : Level) (x : ℝ l1) →
+ abs-ℝ (raise-ℝ l2 x) = raise-ℝ l2 (abs-ℝ x)
+ abs-raise-ℝ l2 x =
+ eq-sim-ℝ
+ ( similarity-reasoning-ℝ
+ abs-ℝ (raise-ℝ l2 x)
+ ~ℝ abs-ℝ x
+ by preserves-sim-abs-ℝ (sim-raise-ℝ' l2 x)
+ ~ℝ raise-ℝ l2 (abs-ℝ x)
+ by sim-raise-ℝ l2 (abs-ℝ x))
+```
+
### The absolute value of a real number is nonnegative
```agda
@@ -183,6 +202,34 @@ module _
### If `|x| = 0` then `x = 0`
```agda
+module _
+ {l : Level} (x : ℝ l) (|x|~0 : sim-ℝ (abs-ℝ x) zero-ℝ)
+ where
+
+ abstract
+ sim-zero-sim-zero-abs-ℝ : sim-ℝ x zero-ℝ
+ sim-zero-sim-zero-abs-ℝ =
+ sim-sim-leq-ℝ
+ ( transitive-leq-ℝ _ _ _ (leq-sim-ℝ |x|~0) (leq-abs-ℝ x) ,
+ binary-tr
+ ( leq-ℝ)
+ ( neg-zero-ℝ)
+ ( neg-neg-ℝ x)
+ ( neg-leq-ℝ
+ ( transitive-leq-ℝ _ _ _ (leq-sim-ℝ |x|~0) (neg-leq-abs-ℝ x))))
+
+abstract
+ eq-raise-zero-eq-raise-zero-abs-ℝ :
+ {l : Level} (x : ℝ l) → abs-ℝ x = raise-ℝ l zero-ℝ → x = raise-ℝ l zero-ℝ
+ eq-raise-zero-eq-raise-zero-abs-ℝ {l} x |x|=0 =
+ eq-sim-ℝ
+ ( transitive-sim-ℝ _ _ _
+ ( sim-raise-ℝ l zero-ℝ)
+ ( sim-zero-sim-zero-abs-ℝ x
+ ( transitive-sim-ℝ _ _ _
+ ( sim-raise-ℝ' l zero-ℝ)
+ ( sim-eq-ℝ |x|=0))))
+
module _
(x : ℝ lzero) (|x|=0 : abs-ℝ x = zero-ℝ)
where
@@ -190,14 +237,7 @@ module _
abstract
is-zero-is-zero-abs-ℝ : x = zero-ℝ
is-zero-is-zero-abs-ℝ =
- antisymmetric-leq-ℝ
- ( x)
- ( zero-ℝ)
- ( tr (leq-ℝ x) |x|=0 (leq-abs-ℝ x))
- ( tr
- ( λ y → leq-ℝ y x)
- ( (ap neg-ℝ |x|=0) ∙ neg-zero-ℝ)
- ( leq-neg-abs-ℝ x))
+ eq-sim-ℝ (sim-zero-sim-zero-abs-ℝ x (sim-eq-ℝ |x|=0))
```
### If `|x| ≤ 0` then `|x| = 0` and `x = 0`
diff --git a/src/real-numbers/addition-real-numbers.lagda.md b/src/real-numbers/addition-real-numbers.lagda.md
index 8f67041ac9..681da0f83d 100644
--- a/src/real-numbers/addition-real-numbers.lagda.md
+++ b/src/real-numbers/addition-real-numbers.lagda.md
@@ -9,8 +9,12 @@ module real-numbers.addition-real-numbers where
Imports
```agda
+open import elementary-number-theory.addition-integers
+open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.addition-rational-numbers
+open import elementary-number-theory.integers
+open import elementary-number-theory.natural-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers
@@ -385,6 +389,23 @@ module _
pr2 iff-translate-left-sim-ℝ = reflects-sim-left-add-ℝ z x y
```
+### Raising the universe level of real numbers distributes over addition
+
+```agda
+abstract
+ distributive-raise-add-ℝ :
+ {l1 l2 : Level} (l3 : Level) (x : ℝ l1) (y : ℝ l2) →
+ raise-ℝ l3 (x +ℝ y) = raise-ℝ l3 x +ℝ raise-ℝ l3 y
+ distributive-raise-add-ℝ l3 x y =
+ eq-sim-ℝ
+ ( similarity-reasoning-ℝ
+ raise-ℝ l3 (x +ℝ y)
+ ~ℝ x +ℝ y
+ by sim-raise-ℝ' l3 (x +ℝ y)
+ ~ℝ raise-ℝ l3 x +ℝ raise-ℝ l3 y
+ by preserves-sim-add-ℝ (sim-raise-ℝ l3 x) (sim-raise-ℝ l3 y))
+```
+
### The inclusion of rational numbers preserves addition
```agda
@@ -427,6 +448,34 @@ abstract
= x +ℝ real-ℚ (p +ℚ q) by ap (x +ℝ_) (add-real-ℚ p q)
```
+### The inclusion of integers preserves addition
+
+```agda
+abstract
+ add-real-ℤ : (x y : ℤ) → real-ℤ x +ℝ real-ℤ y = real-ℤ (x +ℤ y)
+ add-real-ℤ x y =
+ equational-reasoning
+ real-ℤ x +ℝ real-ℤ y
+ = real-ℚ (rational-ℤ x +ℚ rational-ℤ y)
+ by add-real-ℚ _ _
+ = real-ℤ (x +ℤ y)
+ by ap real-ℚ (add-rational-ℤ x y)
+```
+
+### The inclusion of natural numbers preserves addition
+
+```agda
+abstract
+ add-real-ℕ : (x y : ℕ) → real-ℕ x +ℝ real-ℕ y = real-ℕ (x +ℕ y)
+ add-real-ℕ x y =
+ equational-reasoning
+ real-ℕ x +ℝ real-ℕ y
+ = real-ℤ (int-ℕ x +ℤ int-ℕ y)
+ by add-real-ℤ _ _
+ = real-ℕ (x +ℕ y)
+ by ap real-ℤ (add-int-ℕ x y)
+```
+
### Interchange laws for addition on real numbers
```agda
diff --git a/src/real-numbers/cauchy-sequences-real-numbers.lagda.md b/src/real-numbers/cauchy-sequences-real-numbers.lagda.md
index 6876201386..a7d81021a9 100644
--- a/src/real-numbers/cauchy-sequences-real-numbers.lagda.md
+++ b/src/real-numbers/cauchy-sequences-real-numbers.lagda.md
@@ -11,6 +11,8 @@ module real-numbers.cauchy-sequences-real-numbers where
```agda
open import foundation.universe-levels
+open import lists.sequences
+
open import metric-spaces.cartesian-products-metric-spaces
open import metric-spaces.cauchy-sequences-complete-metric-spaces
open import metric-spaces.cauchy-sequences-metric-spaces
@@ -39,6 +41,9 @@ is a [Cauchy sequence](metric-spaces.cauchy-sequences-metric-spaces.md) in the
## Definition
```agda
+is-cauchy-sequence-ℝ : {l : Level} → sequence (ℝ l) → UU l
+is-cauchy-sequence-ℝ {l} = is-cauchy-sequence-Metric-Space (metric-space-ℝ l)
+
cauchy-sequence-ℝ : (l : Level) → UU (lsuc l)
cauchy-sequence-ℝ l = cauchy-sequence-Metric-Space (metric-space-ℝ l)
```
diff --git a/src/real-numbers/convergent-series-real-numbers.lagda.md b/src/real-numbers/convergent-series-real-numbers.lagda.md
deleted file mode 100644
index 9c8b3bd2db..0000000000
--- a/src/real-numbers/convergent-series-real-numbers.lagda.md
+++ /dev/null
@@ -1,40 +0,0 @@
-# Convergent series of real numbers
-
-```agda
-{-# OPTIONS --lossy-unification #-}
-
-module real-numbers.convergent-series-real-numbers where
-```
-
-Imports
-
-```agda
-open import analysis.convergent-series-metric-abelian-groups
-
-open import foundation.propositions
-open import foundation.universe-levels
-
-open import real-numbers.dedekind-real-numbers
-open import real-numbers.series-real-numbers
-```
-
-
-
-## Idea
-
-A [series](real-numbers.series-real-numbers.md) of
-[real numbers](real-numbers.dedekind-real-numbers.md)
-{{#concept "converges" Disambiguation="series of real numbers" Agda=is-sum-series-ℝ}}
-to `x` if the sequence of its partial sums
-[converges](metric-spaces.limits-of-sequences-metric-spaces.md) to `x` in the
-[standard metric space of real numbers](real-numbers.metric-space-of-real-numbers.md).
-
-## Definition
-
-```agda
-is-sum-prop-series-ℝ : {l : Level} → series-ℝ l → ℝ l → Prop l
-is-sum-prop-series-ℝ = is-sum-prop-series-Metric-Ab
-
-is-sum-series-ℝ : {l : Level} → series-ℝ l → ℝ l → UU l
-is-sum-series-ℝ = is-sum-series-Metric-Ab
-```
diff --git a/src/real-numbers/geometric-sequences-real-numbers.lagda.md b/src/real-numbers/geometric-sequences-real-numbers.lagda.md
index a868836657..f5625e7f4e 100644
--- a/src/real-numbers/geometric-sequences-real-numbers.lagda.md
+++ b/src/real-numbers/geometric-sequences-real-numbers.lagda.md
@@ -9,6 +9,9 @@ module real-numbers.geometric-sequences-real-numbers where
Imports
```agda
+open import analysis.convergent-series-real-numbers
+open import analysis.series-real-numbers
+
open import commutative-algebra.geometric-sequences-commutative-rings
open import elementary-number-theory.natural-numbers
@@ -27,7 +30,6 @@ open import metric-spaces.uniformly-continuous-functions-metric-spaces
open import real-numbers.absolute-value-real-numbers
open import real-numbers.apartness-real-numbers
-open import real-numbers.convergent-series-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.difference-real-numbers
open import real-numbers.isometry-difference-real-numbers
@@ -41,7 +43,6 @@ open import real-numbers.nonzero-real-numbers
open import real-numbers.powers-real-numbers
open import real-numbers.raising-universe-levels-real-numbers
open import real-numbers.rational-real-numbers
-open import real-numbers.series-real-numbers
open import real-numbers.similarity-real-numbers
open import real-numbers.strict-inequality-real-numbers
open import real-numbers.uniformly-continuous-functions-real-numbers
diff --git a/src/real-numbers/inequality-real-numbers.lagda.md b/src/real-numbers/inequality-real-numbers.lagda.md
index 1d9d46febf..d44ee49da3 100644
--- a/src/real-numbers/inequality-real-numbers.lagda.md
+++ b/src/real-numbers/inequality-real-numbers.lagda.md
@@ -328,6 +328,21 @@ module _
preserves-leq-right-sim-ℝ : leq-ℝ z x → leq-ℝ z y
preserves-leq-right-sim-ℝ z≤x q qImports
```agda
+open import analysis.complete-metric-abelian-groups
open import analysis.metric-abelian-groups
open import foundation.dependent-pair-types
@@ -16,6 +17,7 @@ open import foundation.universe-levels
open import metric-spaces.pseudometric-spaces
+open import real-numbers.cauchy-completeness-dedekind-real-numbers
open import real-numbers.isometry-addition-real-numbers
open import real-numbers.isometry-negation-real-numbers
open import real-numbers.large-additive-group-of-real-numbers
@@ -34,11 +36,16 @@ The [Dedekind real numbers](real-numbers.dedekind-real-numbers.md) form a
## Definition
```agda
-metric-ab-ℝ : (l : Level) → Metric-Ab (lsuc l) l
-metric-ab-ℝ l =
+metric-ab-add-ℝ : (l : Level) → Metric-Ab (lsuc l) l
+metric-ab-add-ℝ l =
( ab-add-ℝ l ,
structure-Pseudometric-Space (pseudometric-space-ℝ l) ,
is-extensional-pseudometric-space-ℝ ,
is-isometry-neg-ℝ ,
is-isometry-left-add-ℝ)
+
+complete-metric-ab-add-ℝ : (l : Level) → Complete-Metric-Ab (lsuc l) l
+complete-metric-ab-add-ℝ l =
+ ( metric-ab-add-ℝ l ,
+ is-complete-metric-space-ℝ l)
```
diff --git a/src/real-numbers/positive-real-numbers.lagda.md b/src/real-numbers/positive-real-numbers.lagda.md
index e0b81e741e..d14d3b0658 100644
--- a/src/real-numbers/positive-real-numbers.lagda.md
+++ b/src/real-numbers/positive-real-numbers.lagda.md
@@ -9,6 +9,10 @@ module real-numbers.positive-real-numbers where
Imports
```agda
+open import elementary-number-theory.integers
+open import elementary-number-theory.natural-numbers
+open import elementary-number-theory.nonzero-natural-numbers
+open import elementary-number-theory.positive-integers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-positive-rational-numbers
@@ -253,6 +257,32 @@ one-ℝ⁺ : ℝ⁺ lzero
one-ℝ⁺ = positive-real-ℚ⁺ one-ℚ⁺
```
+### The canonical embedding of integers preserves positivity
+
+```agda
+abstract
+ preserves-is-positive-real-ℤ :
+ {x : ℤ} → is-positive-ℤ x → is-positive-ℝ (real-ℤ x)
+ preserves-is-positive-real-ℤ pos-x =
+ preserves-is-positive-real-ℚ (is-positive-rational-ℤ pos-x)
+
+positive-real-ℤ⁺ : ℤ⁺ → ℝ⁺ lzero
+positive-real-ℤ⁺ (x , pos-x) = (real-ℤ x , preserves-is-positive-real-ℤ pos-x)
+```
+
+### The canonical embedding of a nonzero natural number is positive
+
+```agda
+abstract
+ is-positive-real-is-nonzero-ℕ :
+ {n : ℕ} → is-nonzero-ℕ n → is-positive-ℝ (real-ℕ n)
+ is-positive-real-is-nonzero-ℕ n≠0 =
+ preserves-is-positive-real-ℤ (is-positive-int-is-nonzero-ℕ _ n≠0)
+
+positive-real-ℕ⁺ : ℕ⁺ → ℝ⁺ lzero
+positive-real-ℕ⁺ (n , n≠0) = (real-ℕ n , is-positive-real-is-nonzero-ℕ n≠0)
+```
+
### `x` is positive if and only if there exists a positive rational number it is not less than or equal to
```agda
diff --git a/src/real-numbers/saturation-inequality-nonnegative-real-numbers.lagda.md b/src/real-numbers/saturation-inequality-nonnegative-real-numbers.lagda.md
index 69f3a5fb11..ef8ef84722 100644
--- a/src/real-numbers/saturation-inequality-nonnegative-real-numbers.lagda.md
+++ b/src/real-numbers/saturation-inequality-nonnegative-real-numbers.lagda.md
@@ -57,15 +57,16 @@ module _
### If a nonnegative real number is less than or equal to all positive rational numbers, it is similar to zero
```agda
-sim-zero-le-positive-rational-ℝ⁰⁺ :
- {l : Level} (x : ℝ⁰⁺ l) →
- ((ε : ℚ⁺) → leq-ℝ⁰⁺ x (nonnegative-real-ℚ⁺ ε)) →
- sim-zero-ℝ⁰⁺ x
-sim-zero-le-positive-rational-ℝ⁰⁺ x H =
- sim-sim-leq-ℝ
- ( leq-zero-ℝ⁰⁺ x ,
- saturated-leq-ℝ⁰⁺
- ( x)
- ( zero-ℝ⁰⁺)
- ( λ ε → inv-tr (leq-ℝ⁰⁺ x) (left-unit-law-add-ℝ⁰⁺ _) (H ε)))
+abstract
+ sim-zero-leq-positive-rational-ℝ⁰⁺ :
+ {l : Level} (x : ℝ⁰⁺ l) →
+ ((ε : ℚ⁺) → leq-ℝ⁰⁺ x (nonnegative-real-ℚ⁺ ε)) →
+ sim-zero-ℝ⁰⁺ x
+ sim-zero-leq-positive-rational-ℝ⁰⁺ x H =
+ sim-sim-leq-ℝ
+ ( leq-zero-ℝ⁰⁺ x ,
+ saturated-leq-ℝ⁰⁺
+ ( x)
+ ( zero-ℝ⁰⁺)
+ ( λ ε → inv-tr (leq-ℝ⁰⁺ x) (left-unit-law-add-ℝ⁰⁺ _) (H ε)))
```
diff --git a/src/real-numbers/series-real-numbers.lagda.md b/src/real-numbers/series-real-numbers.lagda.md
deleted file mode 100644
index f3d0ecf21e..0000000000
--- a/src/real-numbers/series-real-numbers.lagda.md
+++ /dev/null
@@ -1,42 +0,0 @@
-# Series of real numbers
-
-```agda
-{-# OPTIONS --lossy-unification #-}
-
-module real-numbers.series-real-numbers where
-```
-
-Imports
-
-```agda
-open import analysis.series-metric-abelian-groups
-
-open import foundation.universe-levels
-
-open import lists.sequences
-
-open import real-numbers.dedekind-real-numbers
-open import real-numbers.metric-abelian-group-of-real-numbers
-```
-
-
-
-## Idea
-
-A {{#concept "series" Disambiguation="of real numbers" Agda=series-ℝ}} of
-[real numbers](real-numbers.dedekind-real-numbers.md) is an infinite sum
-$$∑_{n=0}^∞ a_n$$, which is evaluated for convergence in the
-[metric abelian group of real numbers](real-numbers.metric-abelian-group-of-real-numbers.md).
-
-## Definition
-
-```agda
-series-ℝ : (l : Level) → UU (lsuc l)
-series-ℝ l = series-Metric-Ab (metric-ab-ℝ l)
-
-series-terms-ℝ : {l : Level} → sequence (ℝ l) → series-ℝ l
-series-terms-ℝ = series-terms-Metric-Ab
-
-terms-series-ℝ : {l : Level} → series-ℝ l → sequence (ℝ l)
-terms-series-ℝ = term-series-Metric-Ab
-```