From 9dc904028589f42f50421a7fcef9f69b4f8a8d0e Mon Sep 17 00:00:00 2001 From: Fredrik Bakke Date: Thu, 13 Nov 2025 18:33:16 +0100 Subject: [PATCH 1/4] add two wikipedia theorems --- src/group-theory/quotient-groups.lagda.md | 25 ++++++++++++----- .../wikipedia-list-of-theorems.lagda.md | 27 +++++++++++++++++++ 2 files changed, 45 insertions(+), 7 deletions(-) diff --git a/src/group-theory/quotient-groups.lagda.md b/src/group-theory/quotient-groups.lagda.md index d109a8292d..fe625fa0be 100644 --- a/src/group-theory/quotient-groups.lagda.md +++ b/src/group-theory/quotient-groups.lagda.md @@ -42,13 +42,14 @@ open import group-theory.semigroups ## Idea Given a [normal subgroup](group-theory.normal-subgroups.md) `N` of `G`, the -**quotient group** `G/N` is a [group](group-theory.groups.md) equipped with a +{{#concept "quotient group" Agda=quotient-Group}} `G/N` is a +[group](group-theory.groups.md) equipped with a [group homomorphism](group-theory.homomorphisms-groups.md) `q : G → G/N` such -that `N ⊆ ker q`, and such that `q` satisfies the **universal property of the -quotient group**, which asserts that any group homomorphism `f : G → H` such -that `N ⊆ ker f` extends uniquely along `q` to a group homomorphism `G/N → H`. -In other words, the universal property of the quotient group `G/N` asserts that -the map +that `N ⊆ ker q`, and such that `q` satisfies the +{{#concept "universal property of the +quotient group"}}, which asserts that any group homomorphism `f : G → H` such that +`N ⊆ ker f` extends uniquely along `q` to a group homomorphism `G/N → H`. In other +words, the universal property of the quotient group `G/N` asserts that the map ```text hom-Group G/N H → nullifying-hom-Group G H N @@ -60,6 +61,11 @@ from group homomorphisms `G/N → H` to group homomorphism is said to be `N`-nullifying if `N` is contained in the [kernel](group-theory.kernels-homomorphisms-groups.md) of `f`. +That the quotient group satisfies its universal property is also referred to as +the +{{#concept "fundamental theorem on homomorphisms" Disambiguation="of groups" WD="fundamental theorem on homomorphisms" WDID=Q1187646 Agda=is-quotient-group-quotient-Group}}, +or **first isomorphism theorem**. + ## Definitions ### The universal property of quotient groups @@ -529,7 +535,7 @@ above. The first map is an equivalence by the universal property of set quotients, by which we have: ```text - (G/N → H) ≃ reflecting-map G H. + (G/N → H) ≃ reflecting-map G H. ∎ ``` ```agda @@ -714,3 +720,8 @@ module _ unit-congruence-Normal-Subgroup G N ( apply-effectiveness-map-quotient-hom-Group G N (inv H)) ``` + +## External links + +- [Fundamental theorem on homomorphisms](https://en.wikipedia.org/wiki/Fundamental_theorem_on_homomorphisms) + on Wikipedia diff --git a/src/literature/wikipedia-list-of-theorems.lagda.md b/src/literature/wikipedia-list-of-theorems.lagda.md index 0c7846e7b9..dc8e38fc30 100644 --- a/src/literature/wikipedia-list-of-theorems.lagda.md +++ b/src/literature/wikipedia-list-of-theorems.lagda.md @@ -117,6 +117,15 @@ open import foundation.fundamental-theorem-of-equivalence-relations using ( equiv-equivalence-relation-partition) ``` +### Fundamental theorem on homomorphisms {#Q1187646} + +**Author:** [Egbert Rijke](https://egbertrijke.github.io) + +```agda +open import group-theory.quotient-groups using + ( is-quotient-group-quotient-Group) +``` + ### Kleene's fixed point theorem {#Q3527263} **Author:** [Fredrik Bakke](https://www.ntnu.edu/employees/fredrik.bakke) @@ -149,6 +158,24 @@ open import foundation.lawveres-fixed-point-theorem using ( fixed-point-theorem-Lawvere) ``` +### Triangle inequality theorem {#Q208216} + +**Author:** [malarbol](https://github.com/malarbol) + +```agda +open import real-numbers.metric-space-of-real-numbers using + ( is-triangular-neighborhood-ℝ) +``` + +**Author:** [Louis Wasserman](https://github.com/lowasser) + +```agda +open import real-numbers.absolute-value-real-numbers using + ( triangle-inequality-abs-ℝ) +open import real-numbers.distance-real-numbers using + ( triangle-inequality-dist-ℝ) +``` + ### Yoneda lemma {#Q320577} **Author:** [Emily Riehl](https://emilyriehl.github.io/) From e1532d2c1211277f4a2ad90c9765abd89bb16226 Mon Sep 17 00:00:00 2001 From: Fredrik Bakke Date: Thu, 13 Nov 2025 18:36:05 +0100 Subject: [PATCH 2/4] fix concept --- src/group-theory/quotient-groups.lagda.md | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/src/group-theory/quotient-groups.lagda.md b/src/group-theory/quotient-groups.lagda.md index fe625fa0be..3a592690a2 100644 --- a/src/group-theory/quotient-groups.lagda.md +++ b/src/group-theory/quotient-groups.lagda.md @@ -42,14 +42,14 @@ open import group-theory.semigroups ## Idea Given a [normal subgroup](group-theory.normal-subgroups.md) `N` of `G`, the -{{#concept "quotient group" Agda=quotient-Group}} `G/N` is a -[group](group-theory.groups.md) equipped with a +{{#concept "quotient group" WD="quotient group" WDID=Q1138961 Agda=quotient-Group}} +`G/N` is a [group](group-theory.groups.md) equipped with a [group homomorphism](group-theory.homomorphisms-groups.md) `q : G → G/N` such that `N ⊆ ker q`, and such that `q` satisfies the -{{#concept "universal property of the -quotient group"}}, which asserts that any group homomorphism `f : G → H` such that -`N ⊆ ker f` extends uniquely along `q` to a group homomorphism `G/N → H`. In other -words, the universal property of the quotient group `G/N` asserts that the map +{{#concept "universal property of the quotient group" Agda=universal-property-quotient-Group}}, +which asserts that any group homomorphism `f : G → H` such that `N ⊆ ker f` +extends uniquely along `q` to a group homomorphism `G/N → H`. In other words, +the universal property of the quotient group `G/N` asserts that the map ```text hom-Group G/N H → nullifying-hom-Group G H N From c840214aebf0afd9876dc7a74aebe83833e64d43 Mon Sep 17 00:00:00 2001 From: Fredrik Bakke Date: Thu, 27 Nov 2025 22:59:20 +0000 Subject: [PATCH 3/4] Update quotient-groups.lagda.md --- src/group-theory/quotient-groups.lagda.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/group-theory/quotient-groups.lagda.md b/src/group-theory/quotient-groups.lagda.md index 3a592690a2..1638827bf7 100644 --- a/src/group-theory/quotient-groups.lagda.md +++ b/src/group-theory/quotient-groups.lagda.md @@ -61,8 +61,8 @@ from group homomorphisms `G/N → H` to group homomorphism is said to be `N`-nullifying if `N` is contained in the [kernel](group-theory.kernels-homomorphisms-groups.md) of `f`. -That the quotient group satisfies its universal property is also referred to as -the +The fact that the quotient group satisfies its universal property is commonly +known as the {{#concept "fundamental theorem on homomorphisms" Disambiguation="of groups" WD="fundamental theorem on homomorphisms" WDID=Q1187646 Agda=is-quotient-group-quotient-Group}}, or **first isomorphism theorem**. From 5cd5026e93ef517580afd82f5df1883c3c4b3e67 Mon Sep 17 00:00:00 2001 From: Fredrik Bakke Date: Thu, 27 Nov 2025 23:00:30 +0000 Subject: [PATCH 4/4] Update explanation of universal property in quotient groups Clarify the description of the universal property of quotient groups. --- src/group-theory/quotient-groups.lagda.md | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/src/group-theory/quotient-groups.lagda.md b/src/group-theory/quotient-groups.lagda.md index 1638827bf7..f0f831a549 100644 --- a/src/group-theory/quotient-groups.lagda.md +++ b/src/group-theory/quotient-groups.lagda.md @@ -46,10 +46,11 @@ Given a [normal subgroup](group-theory.normal-subgroups.md) `N` of `G`, the `G/N` is a [group](group-theory.groups.md) equipped with a [group homomorphism](group-theory.homomorphisms-groups.md) `q : G → G/N` such that `N ⊆ ker q`, and such that `q` satisfies the -{{#concept "universal property of the quotient group" Agda=universal-property-quotient-Group}}, -which asserts that any group homomorphism `f : G → H` such that `N ⊆ ker f` -extends uniquely along `q` to a group homomorphism `G/N → H`. In other words, -the universal property of the quotient group `G/N` asserts that the map +{{#concept "universal property" Disambiguation="of the quotient group" Agda=universal-property-quotient-Group}} +of the quotient group, which asserts that any group homomorphism `f : G → H` +such that `N ⊆ ker f` extends uniquely along `q` to a group homomorphism +`G/N → H`. In other words, the universal property of the quotient group `G/N` +asserts that the map ```text hom-Group G/N H → nullifying-hom-Group G H N