diff --git a/src/globular-types.lagda.md b/src/globular-types.lagda.md
index 260995b614..dbd4aeeb15 100644
--- a/src/globular-types.lagda.md
+++ b/src/globular-types.lagda.md
@@ -11,6 +11,7 @@ module globular-types where
open import globular-types.base-change-dependent-globular-types public
open import globular-types.base-change-dependent-reflexive-globular-types public
+open import globular-types.batanin-systems-globular-types public
open import globular-types.binary-dependent-globular-types public
open import globular-types.binary-dependent-reflexive-globular-types public
open import globular-types.binary-globular-maps public
@@ -28,8 +29,13 @@ open import globular-types.empty-globular-types public
open import globular-types.equality-globular-types public
open import globular-types.exponentials-globular-types public
open import globular-types.fibers-globular-maps public
+open import globular-types.globular-disks public
open import globular-types.globular-equivalences public
open import globular-types.globular-maps public
+open import globular-types.globular-pasting-diagrams public
+open import globular-types.globular-pasting-schemes public
+open import globular-types.globular-spheres public
+open import globular-types.globular-suspension public
open import globular-types.globular-types public
open import globular-types.large-colax-reflexive-globular-maps public
open import globular-types.large-colax-transitive-globular-maps public
diff --git a/src/globular-types/batanin-systems-globular-types.lagda.md b/src/globular-types/batanin-systems-globular-types.lagda.md
new file mode 100644
index 0000000000..b3bdb3bd9e
--- /dev/null
+++ b/src/globular-types/batanin-systems-globular-types.lagda.md
@@ -0,0 +1,71 @@
+# Batanin systems in globular types
+
+```agda
+{-# OPTIONS --guardedness #-}
+
+module globular-types.batanin-systems-globular-types where
+```
+
+Imports
+
+```agda
+open import foundation.cartesian-product-types
+open import foundation.dependent-pair-types
+open import foundation.empty-types
+open import foundation.universe-levels
+
+open import globular-types.globular-types
+
+open import lists.lists
+
+open import trees.plane-trees
+```
+
+
+
+## Idea
+
+A
+{{#concept "Batanin system" Disambiguation="globular types" Agda=batanin-system-Globular-Type}}
+is similar to a
+[pasting diagram](globular-types.globular-pasting-diagrams.md) of
+[globular types](globular-types.globular-types.md), but it is defined directly in terms of its cells and not as a [globular map](globular-types.globular-maps.md) from a representing object.
+
+## Definition
+
+### Batanin systems
+
+```agda
+module _
+ {l1 : Level}
+ where
+
+ mutual
+ batanin-system-Globular-Type :
+ (T : listed-plane-tree) (G : Globular-Type l1 l1) → UU l1
+ batanin-system-Globular-Type (make-listed-plane-tree nil) G =
+ 0-cell-Globular-Type G
+ batanin-system-Globular-Type (make-listed-plane-tree (cons T ℓ)) G =
+ Σ ( 0-cell-Globular-Type G)
+ ( λ x →
+ Σ ( batanin-system-Globular-Type (make-listed-plane-tree ℓ) G)
+ ( λ B →
+ batanin-system-Globular-Type T
+ ( 1-cell-globular-type-Globular-Type G
+ ( x)
+ ( source-cell-batanin-system-Globular-Type
+ ( make-listed-plane-tree ℓ)
+ ( G)
+ ( B)))))
+
+ source-cell-batanin-system-Globular-Type :
+ (T : listed-plane-tree) (G : Globular-Type l1 l1)
+ (B : batanin-system-Globular-Type T G) → 0-cell-Globular-Type G
+ source-cell-batanin-system-Globular-Type (make-listed-plane-tree nil) G B =
+ B
+ source-cell-batanin-system-Globular-Type
+ ( make-listed-plane-tree (cons T ℓ))
+ ( G)
+ ( B) =
+ pr1 B
+```
diff --git a/src/globular-types/empty-globular-types.lagda.md b/src/globular-types/empty-globular-types.lagda.md
index 9e19f67f78..aadd187a68 100644
--- a/src/globular-types/empty-globular-types.lagda.md
+++ b/src/globular-types/empty-globular-types.lagda.md
@@ -54,3 +54,13 @@ module _
empty-Globular-Type : Globular-Type lzero lzero
empty-Globular-Type = constant-Globular-Type empty
```
+
+### The empty globular type of an arbitrary universe level
+
+```agda
+raise-empty-Globular-Type : (l1 l2 : Level) → Globular-Type l1 l2
+0-cell-Globular-Type (raise-empty-Globular-Type l1 l2) =
+ raise-empty l1
+1-cell-globular-type-Globular-Type (raise-empty-Globular-Type l1 l2) x y =
+ raise-empty-Globular-Type l2 l2
+```
diff --git a/src/globular-types/globular-disks.lagda.md b/src/globular-types/globular-disks.lagda.md
new file mode 100644
index 0000000000..a4ee5edaaa
--- /dev/null
+++ b/src/globular-types/globular-disks.lagda.md
@@ -0,0 +1,62 @@
+# Globular disks
+
+```agda
+{-# OPTIONS --guardedness #-}
+
+module globular-types.globular-disks where
+```
+
+Imports
+
+```agda
+open import elementary-number-theory.natural-numbers
+
+open import foundation.booleans
+open import foundation.unit-type
+open import foundation.universe-levels
+
+open import globular-types.empty-globular-types
+open import globular-types.globular-suspension
+open import globular-types.globular-types
+```
+
+
+
+## Idea
+
+The
+{{#concept "globular `n`-disk" Disambiguation="globular type" Agda=globular-disk}}
+is a [globular type](globular-types.globular-types.md) with the property that
+`n`-cells in an arbitrary globular type `G` are equivalently described as
+[globular maps](globular-types.globular-maps.md) from the globular `n`-disk into
+`G`. In other words, the globular `n`-disk can be thought of as the representing
+`n`-cell.
+
+## Definitions
+
+### The globular `0`-disk
+
+```agda
+0-cell-globular-0-disk : UU lzero
+0-cell-globular-0-disk = unit
+
+1-cell-globular-type-globular-0-disk :
+ (x y : 0-cell-globular-0-disk) → Globular-Type lzero lzero
+1-cell-globular-type-globular-0-disk x y =
+ empty-Globular-Type
+
+globular-0-disk :
+ Globular-Type lzero lzero
+0-cell-Globular-Type globular-0-disk =
+ 0-cell-globular-0-disk
+1-cell-globular-type-Globular-Type globular-0-disk =
+ 1-cell-globular-type-globular-0-disk
+```
+
+### The globular `n`-disk
+
+```agda
+globular-disk : (n : ℕ) → Globular-Type lzero lzero
+globular-disk zero-ℕ = globular-0-disk
+globular-disk (succ-ℕ n) = suspension-Globular-Type (globular-disk n)
+```
diff --git a/src/globular-types/globular-pasting-diagrams.lagda.md b/src/globular-types/globular-pasting-diagrams.lagda.md
new file mode 100644
index 0000000000..b5752f35dd
--- /dev/null
+++ b/src/globular-types/globular-pasting-diagrams.lagda.md
@@ -0,0 +1,43 @@
+# Globular pasting diagrams
+
+```agda
+{-# OPTIONS --guardedness #-}
+
+module globular-types.globular-pasting-diagrams where
+```
+
+Imports
+
+```agda
+open import foundation.universe-levels
+
+open import globular-types.globular-maps
+open import globular-types.globular-pasting-schemes
+open import globular-types.globular-types
+
+open import trees.plane-trees
+```
+
+
+
+## Idea
+
+A
+{{#concept "globular pasting diamgram" Disambiguation="globular types" Agda=pasting-diagram-Globular-Type}}
+in a [globular type](globular-types.globular-types.md) `G` is a
+[globular map](globular-types.globular-maps.md) from a
+[globular pasting scheme](globular-types.globular-pasting-schemes.md) into `G`.
+
+## Definitions
+
+### Globular pasting diagrams
+
+```agda
+module _
+ {l1 l2 : Level} (T : listed-plane-tree) (G : Globular-Type l1 l2)
+ where
+
+ pasting-diagram-Globular-Type : UU (l1 ⊔ l2)
+ pasting-diagram-Globular-Type =
+ globular-map (pasting-scheme-Globular-Type T) G
+```
diff --git a/src/globular-types/globular-pasting-schemes.lagda.md b/src/globular-types/globular-pasting-schemes.lagda.md
new file mode 100644
index 0000000000..f359ad4027
--- /dev/null
+++ b/src/globular-types/globular-pasting-schemes.lagda.md
@@ -0,0 +1,142 @@
+# Globular pasting schemes
+
+```agda
+{-# OPTIONS --guardedness #-}
+
+module globular-types.globular-pasting-schemes where
+```
+
+Imports
+
+```agda
+open import foundation.coproduct-types
+open import foundation.dependent-pair-types
+open import foundation.identity-types
+open import foundation.maybe
+open import foundation.unit-type
+open import foundation.universe-levels
+
+open import globular-types.empty-globular-types
+open import globular-types.globular-disks
+open import globular-types.globular-types
+
+open import lists.lists
+
+open import trees.plane-trees
+```
+
+
+
+## Idea
+
+Consider a [plane tree](trees.plane-trees.md) `T` such as
+
+```text
+ * * *
+ \ / |
+ \ / |
+ \ / |
+ * * *
+ \ | /
+ \ | /
+ \ | /
+ *
+```
+
+The
+{{#concept "globular pasting scheme" Disambiguation="globular type" Agda=pasting-scheme-Globular-Type}}
+of shape `T` is a [globular type](globular-types.globular-types.md) defined
+inductively on the shape of `T` as follows:
+
+- If `T = nil`, then the pasting scheme of shape `T` is a representing 0-cell.
+ That is, a pasting scheme of shape nil is the
+ [0-disk](globular-types.globular-disks.md).
+- If `T = S ∷ ℓ`, where `ℓ` is a [list](lists.lists.md) of plane trees, then the
+ pasting scheme of shape `T` consists a 0-cell `x₀`, the pasting scheme of
+ shape `ℓ` seen as a plane tree, which has an initial 0-cell `x₁`, and the
+ globular type of `1`-cells between `x₀` and `x₁` is the pasting scheme of
+ shape `T`.
+
+In other words, a globular pasting scheme is a representing object for
+[globular pasting diagrams](globular-types.globular-pasting-diagrams.md) of its
+shape. The example plane tree `T` displayed above gives the following pasting
+scheme:
+
+```text
+ _____
+ / ∥ \ ______
+ / ∨ ∨ / ∥ ∨
+ * ------> * ------> * ∥ *
+ \ ∥ ∧ \ ∨ ∧
+ \ ∨ / ------
+ -----
+```
+
+## Definitions
+
+### Pasting schemes
+
+```agda
+module _
+ where
+
+ pasting-scheme-Globular-Type :
+ (T : listed-plane-tree) → Globular-Type lzero lzero
+ pasting-scheme-Globular-Type (make-listed-plane-tree nil) =
+ globular-0-disk
+ 0-cell-Globular-Type (pasting-scheme-Globular-Type
+ ( make-listed-plane-tree (cons T ℓ))) =
+ Maybe
+ ( 0-cell-Globular-Type
+ ( pasting-scheme-Globular-Type (make-listed-plane-tree ℓ)))
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T nil)))
+ ( inl x)
+ ( inl y) =
+ empty-Globular-Type
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T nil)))
+ ( inl x)
+ ( inr y) =
+ empty-Globular-Type
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T nil)))
+ ( inr x)
+ ( inl y) =
+ pasting-scheme-Globular-Type T
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T nil)))
+ ( inr x)
+ ( inr y) =
+ empty-Globular-Type
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type
+ ( make-listed-plane-tree (cons S (cons T ℓ))))
+ ( inl x)
+ ( inl y) =
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T ℓ))) x y
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type
+ ( make-listed-plane-tree (cons S (cons T ℓ))))
+ ( inl x)
+ ( inr y) =
+ empty-Globular-Type
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type
+ ( make-listed-plane-tree (cons S (cons T ℓ))))
+ ( inr x)
+ ( inl (inl y)) = empty-Globular-Type
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type
+ ( make-listed-plane-tree (cons S (cons T ℓ))))
+ ( inr x)
+ ( inl (inr y)) =
+ pasting-scheme-Globular-Type S
+ 1-cell-globular-type-Globular-Type
+ ( pasting-scheme-Globular-Type
+ ( make-listed-plane-tree (cons S (cons T ℓ))))
+ ( inr x)
+ ( inr y) =
+ empty-Globular-Type
+```
diff --git a/src/globular-types/globular-spheres.lagda.md b/src/globular-types/globular-spheres.lagda.md
new file mode 100644
index 0000000000..0984a96b19
--- /dev/null
+++ b/src/globular-types/globular-spheres.lagda.md
@@ -0,0 +1,49 @@
+# Globular spheres
+
+```agda
+{-# OPTIONS --guardedness #-}
+
+module globular-types.globular-spheres where
+```
+
+Imports
+
+```agda
+open import elementary-number-theory.natural-numbers
+
+open import foundation.booleans
+open import foundation.unit-type
+open import foundation.universe-levels
+
+open import globular-types.empty-globular-types
+open import globular-types.globular-suspension
+open import globular-types.globular-types
+```
+
+
+
+## Idea
+
+The
+{{#concept "globular `n`-sphere" Disambiguation="globular type" Agda=globular-sphere}}
+is a [globular type](globular-types.globular-types.md) defined by iterated
+[globular suspension](globular-types.globular-suspension.md) of the
+[empty globular type](globular-types.empty-globular-types.md).
+
+## Definitions
+
+### The globular `0`-sphere
+
+```agda
+globular-0-sphere :
+ Globular-Type lzero lzero
+globular-0-sphere = suspension-Globular-Type empty-Globular-Type
+```
+
+### The globular `n`-sphere
+
+```agda
+globular-sphere : (n : ℕ) → Globular-Type lzero lzero
+globular-sphere zero-ℕ = globular-0-sphere
+globular-sphere (succ-ℕ n) = suspension-Globular-Type (globular-sphere n)
+```
diff --git a/src/globular-types/globular-suspension.lagda.md b/src/globular-types/globular-suspension.lagda.md
new file mode 100644
index 0000000000..6dfa4218f7
--- /dev/null
+++ b/src/globular-types/globular-suspension.lagda.md
@@ -0,0 +1,68 @@
+# Globular suspension
+
+```agda
+{-# OPTIONS --guardedness #-}
+
+module globular-types.globular-suspension where
+```
+
+Imports
+
+```agda
+open import foundation.universe-levels
+
+open import globular-types.empty-globular-types
+open import globular-types.globular-types
+```
+
+
+
+## Idea
+
+The
+{{#concept "globular suspension" Disambiguation="globular type" Agda=suspension-Globular-Type}}
+of a [globular type](globular-types.globular-types.md) `G` is a globular type
+`ΣG` with exactly two `0`-cells called north and south, and a
+[globular map](globular-types.globular-maps.md) from G to the globular type of
+`1`-cells from north to south in `ΣG`.
+
+## Definition
+
+### The suspension of globular types of a fixed universe level `l1`
+
+Note: Allowing globular types with separate universe levels for 0-cells and
+higher cells complicates the definition of suspension.
+
+```agda
+module _
+ {l1 : Level} (G : Globular-Type l1 l1)
+ where
+
+ data 0-cell-suspension-Globular-Type : UU lzero where
+ north-suspension-Globular-Type : 0-cell-suspension-Globular-Type
+ south-suspension-Globular-Type : 0-cell-suspension-Globular-Type
+
+ suspension-Globular-Type : Globular-Type lzero l1
+ 0-cell-Globular-Type suspension-Globular-Type =
+ 0-cell-suspension-Globular-Type
+ 1-cell-globular-type-Globular-Type
+ suspension-Globular-Type
+ north-suspension-Globular-Type
+ north-suspension-Globular-Type =
+ raise-empty-Globular-Type l1 l1
+ 1-cell-globular-type-Globular-Type
+ suspension-Globular-Type
+ north-suspension-Globular-Type
+ south-suspension-Globular-Type =
+ G
+ 1-cell-globular-type-Globular-Type
+ suspension-Globular-Type
+ south-suspension-Globular-Type
+ north-suspension-Globular-Type =
+ raise-empty-Globular-Type l1 l1
+ 1-cell-globular-type-Globular-Type
+ suspension-Globular-Type
+ south-suspension-Globular-Type
+ south-suspension-Globular-Type =
+ raise-empty-Globular-Type l1 l1
+```