diff --git a/src/orthogonal-factorization-systems.lagda.md b/src/orthogonal-factorization-systems.lagda.md index 6a1e039af0..e5d5ee9e42 100644 --- a/src/orthogonal-factorization-systems.lagda.md +++ b/src/orthogonal-factorization-systems.lagda.md @@ -71,6 +71,8 @@ open import orthogonal-factorization-systems.reflective-global-subuniverses publ open import orthogonal-factorization-systems.reflective-modalities public open import orthogonal-factorization-systems.reflective-subuniverses public open import orthogonal-factorization-systems.regular-cd-structures public +open import orthogonal-factorization-systems.relative-separations-types-global-subuniverses public +open import orthogonal-factorization-systems.relative-separations-types-subuniverses public open import orthogonal-factorization-systems.sigma-closed-modalities public open import orthogonal-factorization-systems.sigma-closed-reflective-modalities public open import orthogonal-factorization-systems.sigma-closed-reflective-subuniverses public diff --git a/src/orthogonal-factorization-systems/relative-separations-types-global-subuniverses.lagda.md b/src/orthogonal-factorization-systems/relative-separations-types-global-subuniverses.lagda.md new file mode 100644 index 0000000000..2736db6002 --- /dev/null +++ b/src/orthogonal-factorization-systems/relative-separations-types-global-subuniverses.lagda.md @@ -0,0 +1,90 @@ +# Relative separations of types at global subuniverses + +```agda +module orthogonal-factorization-systems.relative-separations-types-global-subuniverses where +``` + +
Imports + +```agda +open import foundation.dependent-pair-types +open import foundation.equivalences +open import foundation.global-subuniverses +open import foundation.universe-levels + +open import foundation-core.function-types +open import foundation-core.identity-types +open import foundation-core.propositions + +open import orthogonal-factorization-systems.extensions-maps +open import orthogonal-factorization-systems.postcomposition-extensions-maps +``` + +
+ +## Idea + +Consider a [global subuniverse](foundation.global-subuniverses.md) `K` and a map +`δ : X → Y`. A type `A` is said to be +{{#concept "`K`-separated relative to `δ`" Agda=is-rel-separated}} if the type +of extensions of any map `f : X → A` along `δ` is in `K`. + +As a special case, a type `A` is _`K`-separated_ if it is `K`-separated relative +to the terminal projection at a two-element type. + +## Definitions + +### The predicate of being separated + +```agda +module _ + {α : Level → Level} {l1 l2 l3 : Level} (K : global-subuniverse α) + {X : UU l1} {Y : UU l2} (δ : X → Y) + where + + is-rel-separated : (A : UU l3) → UU (α (l1 ⊔ l2 ⊔ l3) ⊔ l1 ⊔ l3) + is-rel-separated A = + (f : X → A) → is-in-global-subuniverse K (extension-map δ f) + + is-prop-is-rel-separated : + (A : UU l3) → is-prop (is-rel-separated A) + is-prop-is-rel-separated A = + is-prop-Π (λ f → is-prop-is-in-global-subuniverse K (extension-map δ f)) + + is-rel-separated-Prop : + (A : UU l3) → Prop (α (l1 ⊔ l2 ⊔ l3) ⊔ l1 ⊔ l3) + is-rel-separated-Prop A = + ( is-rel-separated A , is-prop-is-rel-separated A) +``` + +### The global subuniverse of `K`-separated types relative to `δ` + +```agda +module _ + {α : Level → Level} {l1 l2 : Level} (K : global-subuniverse α) + {X : UU l1} {Y : UU l2} (δ : X → Y) + where + + is-closed-under-equiv-rel-separated-global-subuniverse : + {l4 l5 : Level} → + is-closed-under-equiv-subuniverses + ( λ l3 → α (l1 ⊔ l2 ⊔ l3) ⊔ l1 ⊔ l3) + ( λ l3 → is-rel-separated-Prop {l3 = l3} K δ) + ( l4) + ( l5) + is-closed-under-equiv-rel-separated-global-subuniverse A B e H f = + is-closed-under-equiv-global-subuniverse K + ( extension-map δ (map-inv-equiv e ∘ f)) + ( extension-map δ f) + ( inv-equiv (equiv-postcomp-extension-map δ f (inv-equiv e))) + ( H (map-inv-equiv e ∘ f)) + + rel-separated-global-subuniverse : + global-subuniverse (λ l3 → α (l1 ⊔ l2 ⊔ l3) ⊔ l1 ⊔ l3) + rel-separated-global-subuniverse = + λ where + .subuniverse-global-subuniverse l3 → + is-rel-separated-Prop K δ + .is-closed-under-equiv-global-subuniverse → + is-closed-under-equiv-rel-separated-global-subuniverse +``` diff --git a/src/orthogonal-factorization-systems/relative-separations-types-subuniverses.lagda.md b/src/orthogonal-factorization-systems/relative-separations-types-subuniverses.lagda.md new file mode 100644 index 0000000000..fc1c694280 --- /dev/null +++ b/src/orthogonal-factorization-systems/relative-separations-types-subuniverses.lagda.md @@ -0,0 +1,55 @@ +# Relative separations of types at subuniverses + +```agda +module orthogonal-factorization-systems.relative-separations-types-subuniverses where +``` + +
Imports + +```agda +open import foundation.dependent-pair-types +open import foundation.subuniverses +open import foundation.universe-levels + +open import foundation-core.identity-types +open import foundation-core.propositions + +open import orthogonal-factorization-systems.extensions-maps +``` + +
+ +## Idea + +Consider a [subuniverse](foundation.subuniverses.md) `K` and a map `δ : X → Y`. +A type `A` is said to be +{{#concept "`K`-separated relative to `δ`" Agda=is-rel-separated'}} if the type +of extensions of any map `f : X → A` along `δ` is in `K`. + +## Definitions + +### The predicate of being rel-separated + +```agda +module _ + {l1 l2 l3 : Level} (K : subuniverse l1 l2) + {X : UU l1} {Y : UU l1} (δ : X → Y) + where + + is-rel-separated' : (A : UU l1) → UU (l1 ⊔ l2) + is-rel-separated' A = (f : X → A) → is-in-subuniverse K (extension-map δ f) + + is-prop-is-rel-separated' : + (A : UU l1) → is-prop (is-rel-separated' A) + is-prop-is-rel-separated' A = + is-prop-Π (λ f → is-prop-is-in-subuniverse K (extension-map δ f)) + + is-rel-separated'-Prop : + (A : UU l1) → Prop (l1 ⊔ l2) + is-rel-separated'-Prop A = + ( is-rel-separated' A , is-prop-is-rel-separated' A) +``` + +## See also + +- [Relative separations of types at global subuniverses](orthogonal-factorization-systems.relative-separations-types-global-subuniverses.md)