diff --git a/src/orthogonal-factorization-systems.lagda.md b/src/orthogonal-factorization-systems.lagda.md
index 6a1e039af0..e5d5ee9e42 100644
--- a/src/orthogonal-factorization-systems.lagda.md
+++ b/src/orthogonal-factorization-systems.lagda.md
@@ -71,6 +71,8 @@ open import orthogonal-factorization-systems.reflective-global-subuniverses publ
open import orthogonal-factorization-systems.reflective-modalities public
open import orthogonal-factorization-systems.reflective-subuniverses public
open import orthogonal-factorization-systems.regular-cd-structures public
+open import orthogonal-factorization-systems.relative-separations-types-global-subuniverses public
+open import orthogonal-factorization-systems.relative-separations-types-subuniverses public
open import orthogonal-factorization-systems.sigma-closed-modalities public
open import orthogonal-factorization-systems.sigma-closed-reflective-modalities public
open import orthogonal-factorization-systems.sigma-closed-reflective-subuniverses public
diff --git a/src/orthogonal-factorization-systems/relative-separations-types-global-subuniverses.lagda.md b/src/orthogonal-factorization-systems/relative-separations-types-global-subuniverses.lagda.md
new file mode 100644
index 0000000000..2736db6002
--- /dev/null
+++ b/src/orthogonal-factorization-systems/relative-separations-types-global-subuniverses.lagda.md
@@ -0,0 +1,90 @@
+# Relative separations of types at global subuniverses
+
+```agda
+module orthogonal-factorization-systems.relative-separations-types-global-subuniverses where
+```
+
+Imports
+
+```agda
+open import foundation.dependent-pair-types
+open import foundation.equivalences
+open import foundation.global-subuniverses
+open import foundation.universe-levels
+
+open import foundation-core.function-types
+open import foundation-core.identity-types
+open import foundation-core.propositions
+
+open import orthogonal-factorization-systems.extensions-maps
+open import orthogonal-factorization-systems.postcomposition-extensions-maps
+```
+
+
+
+## Idea
+
+Consider a [global subuniverse](foundation.global-subuniverses.md) `K` and a map
+`δ : X → Y`. A type `A` is said to be
+{{#concept "`K`-separated relative to `δ`" Agda=is-rel-separated}} if the type
+of extensions of any map `f : X → A` along `δ` is in `K`.
+
+As a special case, a type `A` is _`K`-separated_ if it is `K`-separated relative
+to the terminal projection at a two-element type.
+
+## Definitions
+
+### The predicate of being separated
+
+```agda
+module _
+ {α : Level → Level} {l1 l2 l3 : Level} (K : global-subuniverse α)
+ {X : UU l1} {Y : UU l2} (δ : X → Y)
+ where
+
+ is-rel-separated : (A : UU l3) → UU (α (l1 ⊔ l2 ⊔ l3) ⊔ l1 ⊔ l3)
+ is-rel-separated A =
+ (f : X → A) → is-in-global-subuniverse K (extension-map δ f)
+
+ is-prop-is-rel-separated :
+ (A : UU l3) → is-prop (is-rel-separated A)
+ is-prop-is-rel-separated A =
+ is-prop-Π (λ f → is-prop-is-in-global-subuniverse K (extension-map δ f))
+
+ is-rel-separated-Prop :
+ (A : UU l3) → Prop (α (l1 ⊔ l2 ⊔ l3) ⊔ l1 ⊔ l3)
+ is-rel-separated-Prop A =
+ ( is-rel-separated A , is-prop-is-rel-separated A)
+```
+
+### The global subuniverse of `K`-separated types relative to `δ`
+
+```agda
+module _
+ {α : Level → Level} {l1 l2 : Level} (K : global-subuniverse α)
+ {X : UU l1} {Y : UU l2} (δ : X → Y)
+ where
+
+ is-closed-under-equiv-rel-separated-global-subuniverse :
+ {l4 l5 : Level} →
+ is-closed-under-equiv-subuniverses
+ ( λ l3 → α (l1 ⊔ l2 ⊔ l3) ⊔ l1 ⊔ l3)
+ ( λ l3 → is-rel-separated-Prop {l3 = l3} K δ)
+ ( l4)
+ ( l5)
+ is-closed-under-equiv-rel-separated-global-subuniverse A B e H f =
+ is-closed-under-equiv-global-subuniverse K
+ ( extension-map δ (map-inv-equiv e ∘ f))
+ ( extension-map δ f)
+ ( inv-equiv (equiv-postcomp-extension-map δ f (inv-equiv e)))
+ ( H (map-inv-equiv e ∘ f))
+
+ rel-separated-global-subuniverse :
+ global-subuniverse (λ l3 → α (l1 ⊔ l2 ⊔ l3) ⊔ l1 ⊔ l3)
+ rel-separated-global-subuniverse =
+ λ where
+ .subuniverse-global-subuniverse l3 →
+ is-rel-separated-Prop K δ
+ .is-closed-under-equiv-global-subuniverse →
+ is-closed-under-equiv-rel-separated-global-subuniverse
+```
diff --git a/src/orthogonal-factorization-systems/relative-separations-types-subuniverses.lagda.md b/src/orthogonal-factorization-systems/relative-separations-types-subuniverses.lagda.md
new file mode 100644
index 0000000000..fc1c694280
--- /dev/null
+++ b/src/orthogonal-factorization-systems/relative-separations-types-subuniverses.lagda.md
@@ -0,0 +1,55 @@
+# Relative separations of types at subuniverses
+
+```agda
+module orthogonal-factorization-systems.relative-separations-types-subuniverses where
+```
+
+Imports
+
+```agda
+open import foundation.dependent-pair-types
+open import foundation.subuniverses
+open import foundation.universe-levels
+
+open import foundation-core.identity-types
+open import foundation-core.propositions
+
+open import orthogonal-factorization-systems.extensions-maps
+```
+
+
+
+## Idea
+
+Consider a [subuniverse](foundation.subuniverses.md) `K` and a map `δ : X → Y`.
+A type `A` is said to be
+{{#concept "`K`-separated relative to `δ`" Agda=is-rel-separated'}} if the type
+of extensions of any map `f : X → A` along `δ` is in `K`.
+
+## Definitions
+
+### The predicate of being rel-separated
+
+```agda
+module _
+ {l1 l2 l3 : Level} (K : subuniverse l1 l2)
+ {X : UU l1} {Y : UU l1} (δ : X → Y)
+ where
+
+ is-rel-separated' : (A : UU l1) → UU (l1 ⊔ l2)
+ is-rel-separated' A = (f : X → A) → is-in-subuniverse K (extension-map δ f)
+
+ is-prop-is-rel-separated' :
+ (A : UU l1) → is-prop (is-rel-separated' A)
+ is-prop-is-rel-separated' A =
+ is-prop-Π (λ f → is-prop-is-in-subuniverse K (extension-map δ f))
+
+ is-rel-separated'-Prop :
+ (A : UU l1) → Prop (l1 ⊔ l2)
+ is-rel-separated'-Prop A =
+ ( is-rel-separated' A , is-prop-is-rel-separated' A)
+```
+
+## See also
+
+- [Relative separations of types at global subuniverses](orthogonal-factorization-systems.relative-separations-types-global-subuniverses.md)