|
| 1 | +# Large function monoids |
| 2 | + |
| 3 | +```agda |
| 4 | +module group-theory.large-function-monoids where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import foundation.function-extensionality |
| 11 | +open import foundation.function-large-similarity-relations |
| 12 | +open import foundation.universe-levels |
| 13 | +
|
| 14 | +open import group-theory.large-function-semigroups |
| 15 | +open import group-theory.large-monoids |
| 16 | +``` |
| 17 | + |
| 18 | +</details> |
| 19 | + |
| 20 | +## Idea |
| 21 | + |
| 22 | +Given a [large monoid](group-theory.large-monoids.md) `M` and an arbitrary type |
| 23 | +`A`, `A → M` forms a large monoid. |
| 24 | + |
| 25 | +## Definition |
| 26 | + |
| 27 | +```agda |
| 28 | +module _ |
| 29 | + {l1 : Level} |
| 30 | + {α : Level → Level} |
| 31 | + {β : Level → Level → Level} |
| 32 | + (A : UU l1) |
| 33 | + (M : Large-Monoid α β) |
| 34 | + where |
| 35 | +
|
| 36 | + function-Large-Monoid : |
| 37 | + Large-Monoid (λ l → l1 ⊔ α l) (λ l2 l3 → l1 ⊔ β l2 l3) |
| 38 | + large-semigroup-Large-Monoid function-Large-Monoid = |
| 39 | + function-Large-Semigroup A (large-semigroup-Large-Monoid M) |
| 40 | + large-similarity-relation-Large-Monoid function-Large-Monoid = |
| 41 | + function-Large-Similarity-Relation |
| 42 | + ( A) |
| 43 | + ( large-similarity-relation-Large-Monoid M) |
| 44 | + raise-Large-Monoid function-Large-Monoid l f a = raise-Large-Monoid M l (f a) |
| 45 | + sim-raise-Large-Monoid function-Large-Monoid l2 f a = |
| 46 | + sim-raise-Large-Monoid M l2 (f a) |
| 47 | + preserves-sim-mul-Large-Monoid function-Large-Monoid f f' f~f' g g' g~g' a = |
| 48 | + preserves-sim-mul-Large-Monoid M (f a) (f' a) (f~f' a) (g a) (g' a) (g~g' a) |
| 49 | + unit-Large-Monoid function-Large-Monoid a = unit-Large-Monoid M |
| 50 | + left-unit-law-mul-Large-Monoid function-Large-Monoid f = |
| 51 | + eq-htpy (λ a → left-unit-law-mul-Large-Monoid M (f a)) |
| 52 | + right-unit-law-mul-Large-Monoid function-Large-Monoid f = |
| 53 | + eq-htpy (λ a → right-unit-law-mul-Large-Monoid M (f a)) |
| 54 | +``` |
0 commit comments