File tree Expand file tree Collapse file tree 1 file changed +17
-3
lines changed
Expand file tree Collapse file tree 1 file changed +17
-3
lines changed Original file line number Diff line number Diff line change @@ -312,9 +312,23 @@ \subsection{Kernels and cokernels}
312312\begin {xca }
313313 Given a homomorphism $ f:\Hom (G,G')$ , prove that
314314 \marginnote {Hint: consider the corresponding property of the preimage of $ \Bf $ .
315- $$ \xymatrix {L\ar [drr]^h\ar@ {.>}[dr]^{k}\ar [ddr]&&\\
316- &\Ker f\ar [r]_{\incl _{\ker f}}\ar [d]&G\ar [d]^f\\
317- &{1}\ar [r]&\, G'.}$$ }
315+ \[
316+ \begin {tikzpicture }[scale=1.5]
317+ \path (-1,1) node (L) {$ L$ }
318+ (0,0) node (Ker) {$ \Ker f$ }
319+ (1,0) node (G) {$ G$ }
320+ (0,-1) node (one) {$ 1 $ }
321+ (1,-1) node (G') {$ G'$ };
322+ \draw [->,dotted] (L) -- node[above right] {$ k$ } (Ker);
323+ \draw [->] (L) to[bend left] node[above right] {$ h$ } (G);
324+ \draw [->] (L) to[bend right] (one);
325+ \draw [->] (Ker) -- node[below] {$ \incl _{\ker f}$ } (G);
326+ \draw [->] (Ker) -- (one);
327+ \draw [->] (G) -- node[right] {$ f$ } (G');
328+ \draw [->] (one) -- (G');
329+ \end {tikzpicture }
330+ \]
331+ }
318332 \begin {enumerate }
319333 \item $ f$ is a monomorphism if and only if the kernel is trivial
320334 \item $ f$ is an epimorphims if and only if the cokernel is contractible.
You can’t perform that action at this time.
0 commit comments