Skip to content

Commit 7166e65

Browse files
committed
xy to tikz: convert the Ker f diagram
1 parent 68465eb commit 7166e65

File tree

1 file changed

+17
-3
lines changed

1 file changed

+17
-3
lines changed

subgroups.tex

Lines changed: 17 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -312,9 +312,23 @@ \subsection{Kernels and cokernels}
312312
\begin{xca}
313313
Given a homomorphism $f:\Hom(G,G')$, prove that
314314
\marginnote{Hint: consider the corresponding property of the preimage of $\Bf$.
315-
$$\xymatrix{L\ar[drr]^h\ar@{.>}[dr]^{k}\ar[ddr]&&\\
316-
&\Ker f\ar[r]_{\incl_{\ker f}}\ar[d]&G\ar[d]^f\\
317-
&{1}\ar[r]&\,G'.}$$}
315+
\[
316+
\begin{tikzpicture}[scale=1.5]
317+
\path (-1,1) node (L) {$L$}
318+
(0,0) node (Ker) {$\Ker f$}
319+
(1,0) node (G) {$G$}
320+
(0,-1) node (one) {$1$}
321+
(1,-1) node (G') {$G'$};
322+
\draw[->,dotted] (L) -- node[above right] {$k$} (Ker);
323+
\draw[->] (L) to[bend left] node[above right] {$h$} (G);
324+
\draw[->] (L) to[bend right] (one);
325+
\draw[->] (Ker) -- node[below] {$\incl_{\ker f}$} (G);
326+
\draw[->] (Ker) -- (one);
327+
\draw[->] (G) -- node[right] {$f$} (G');
328+
\draw[->] (one) -- (G');
329+
\end{tikzpicture}
330+
\]
331+
}
318332
\begin{enumerate}
319333
\item $f$ is a monomorphism if and only if the kernel is trivial
320334
\item $f$ is an epimorphims if and only if the cokernel is contractible.

0 commit comments

Comments
 (0)