|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "3.9 多层感知机的从零开始实现\n", |
| 8 | + "我们已经从上一节里了解了多层感知机的原理。下面,我们一起来动手实现一个多层感知机。首先导入实现所需的包或模块。" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 41, |
| 14 | + "metadata": { |
| 15 | + "pycharm": { |
| 16 | + "is_executing": false |
| 17 | + } |
| 18 | + }, |
| 19 | + "outputs": [ |
| 20 | + { |
| 21 | + "name": "stdout", |
| 22 | + "output_type": "stream", |
| 23 | + "text": [ |
| 24 | + "2.0.0\n" |
| 25 | + ] |
| 26 | + } |
| 27 | + ], |
| 28 | + "source": [ |
| 29 | + "import tensorflow as tf\n", |
| 30 | + "import numpy as np\n", |
| 31 | + "import sys\n", |
| 32 | + "print(tf.__version__)" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "markdown", |
| 37 | + "metadata": {}, |
| 38 | + "source": [ |
| 39 | + "3.9.1 获取和读取数据\n", |
| 40 | + "这里继续使用Fashion-MNIST数据集。我们将使用多层感知机对图像进行分类" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 42, |
| 46 | + "metadata": { |
| 47 | + "collapsed": true |
| 48 | + }, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "from tensorflow.keras.datasets import fashion_mnist\n", |
| 52 | + "(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()\n", |
| 53 | + "batch_size = 256\n", |
| 54 | + "x_train = tf.cast(x_train, tf.float32)\n", |
| 55 | + "x_test = tf.cast(x_test, tf.float32)\n", |
| 56 | + "x_train = x_train/255.0\n", |
| 57 | + "x_test = x_test/255.0\n", |
| 58 | + "train_iter = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size)\n", |
| 59 | + "test_iter = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size)" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "markdown", |
| 64 | + "metadata": {}, |
| 65 | + "source": [ |
| 66 | + "3.9.2 定义模型参数\n", |
| 67 | + "我们在3.6节(softmax回归的从零开始实现)里已经介绍了,Fashion-MNIST数据集中图像形状为 28×28,类别数为10。本节中我们依然使用长度为 28×28=784 的向量表示每一张图像。因此,输入个数为784,输出个数为10。实验中,我们设超参数隐藏单元个数为256。" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 43, |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "num_inputs, num_outputs, num_hiddens = 784, 10, 256\n", |
| 77 | + "\n", |
| 78 | + "w1 = tf.Variable(tf.random.truncated_normal([num_inputs, num_hiddens], stddev=0.1))\n", |
| 79 | + "b1 = tf.Variable(tf.random.truncated_normal([num_hiddens], stddev=0.1))\n", |
| 80 | + "w2 = tf.Variable(tf.random.truncated_normal([num_hiddens, num_outputs], stddev=0.1))\n", |
| 81 | + "b2=tf.Variable(tf.random.truncated_normal([num_outputs], stddev=0.1))\n" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "markdown", |
| 86 | + "metadata": {}, |
| 87 | + "source": [ |
| 88 | + "3.9.3 定义激活函数\n", |
| 89 | + "这里我们使用基础的max函数来实现ReLU,而非直接调用relu函数。" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 44, |
| 95 | + "metadata": { |
| 96 | + "collapsed": true |
| 97 | + }, |
| 98 | + "outputs": [], |
| 99 | + "source": [ |
| 100 | + "def relu(x):\n", |
| 101 | + " return tf.math.maximum(x,0)" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": 45, |
| 107 | + "metadata": { |
| 108 | + "collapsed": true |
| 109 | + }, |
| 110 | + "outputs": [], |
| 111 | + "source": [ |
| 112 | + "def net(x,w1,b1,w2,b2):\n", |
| 113 | + " x = tf.reshape(x,shape=[-1,num_inputs])\n", |
| 114 | + " h = relu(tf.matmul(x,w1) + b1 )\n", |
| 115 | + " y = tf.math.softmax( tf.matmul(h,w2) + b2 )\n", |
| 116 | + " return y" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "markdown", |
| 121 | + "metadata": {}, |
| 122 | + "source": [ |
| 123 | + "3.9.5. 定义损失函数¶\n", |
| 124 | + "为了得到更好的数值稳定性,我们直接使用Tensorflow提供的包括softmax运算和交叉熵损失计算的函数。" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": 46, |
| 130 | + "metadata": { |
| 131 | + "collapsed": true |
| 132 | + }, |
| 133 | + "outputs": [], |
| 134 | + "source": [ |
| 135 | + "def loss(y_hat,y_true):\n", |
| 136 | + " return tf.losses.sparse_categorical_crossentropy(y_true,y_hat)" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "markdown", |
| 141 | + "metadata": {}, |
| 142 | + "source": [ |
| 143 | + "3.9.6. 训练模型" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": 47, |
| 149 | + "metadata": { |
| 150 | + "collapsed": true |
| 151 | + }, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "def acc(y_hat,y):\n", |
| 155 | + " return np.mean((tf.argmax(y_hat,axis=1) == y))" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "code", |
| 160 | + "execution_count": 48, |
| 161 | + "metadata": { |
| 162 | + "collapsed": true |
| 163 | + }, |
| 164 | + "outputs": [], |
| 165 | + "source": [ |
| 166 | + "num_epochs, lr = 5, 0.5" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": 49, |
| 172 | + "metadata": {}, |
| 173 | + "outputs": [ |
| 174 | + { |
| 175 | + "name": "stdout", |
| 176 | + "output_type": "stream", |
| 177 | + "text": [ |
| 178 | + "0 loss: 0.7799275\n", |
| 179 | + "0 test_acc: 0.875\n", |
| 180 | + "1 loss: 0.72887945\n", |
| 181 | + "1 test_acc: 0.9375\n", |
| 182 | + "2 loss: 0.72454\n", |
| 183 | + "2 test_acc: 0.8125\n", |
| 184 | + "3 loss: 0.5607478\n", |
| 185 | + "3 test_acc: 0.875\n", |
| 186 | + "4 loss: 0.5008962\n", |
| 187 | + "4 test_acc: 0.9375\n" |
| 188 | + ] |
| 189 | + } |
| 190 | + ], |
| 191 | + "source": [ |
| 192 | + "for epoch in range(num_epochs):\n", |
| 193 | + " loss_all = 0\n", |
| 194 | + " for x,y in train_iter:\n", |
| 195 | + " with tf.GradientTape() as tape:\n", |
| 196 | + " y_hat = net(x,w1,b1,w2,b2)\n", |
| 197 | + " l = tf.reduce_mean(loss(y_hat,y))\n", |
| 198 | + " loss_all += l.numpy()\n", |
| 199 | + " grads = tape.gradient(l, [w1, b1, w2, b2])\n", |
| 200 | + " w1.assign_sub(grads[0])\n", |
| 201 | + " b1.assign_sub(grads[1])\n", |
| 202 | + " w2.assign_sub(grads[2])\n", |
| 203 | + " b2.assign_sub(grads[3])\n", |
| 204 | + " print(epoch, 'loss:', l.numpy())\n", |
| 205 | + " total_correct, total_number = 0, 0\n", |
| 206 | + "\n", |
| 207 | + " for x,y in test_iter:\n", |
| 208 | + " with tf.GradientTape() as tape:\n", |
| 209 | + " y_hat = net(x,w1,b1,w2,b2)\n", |
| 210 | + " y=tf.cast(y,'int64')\n", |
| 211 | + " correct=acc(y_hat,y)\n", |
| 212 | + " print(epoch,\"test_acc:\", correct)" |
| 213 | + ] |
| 214 | + }, |
| 215 | + { |
| 216 | + "cell_type": "code", |
| 217 | + "execution_count": null, |
| 218 | + "metadata": {}, |
| 219 | + "outputs": [], |
| 220 | + "source": [] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "code", |
| 224 | + "execution_count": null, |
| 225 | + "metadata": { |
| 226 | + "collapsed": true |
| 227 | + }, |
| 228 | + "outputs": [], |
| 229 | + "source": [] |
| 230 | + }, |
| 231 | + { |
| 232 | + "cell_type": "code", |
| 233 | + "execution_count": null, |
| 234 | + "metadata": { |
| 235 | + "collapsed": true |
| 236 | + }, |
| 237 | + "outputs": [], |
| 238 | + "source": [] |
| 239 | + } |
| 240 | + ], |
| 241 | + "metadata": { |
| 242 | + "kernelspec": { |
| 243 | + "display_name": "Python 3", |
| 244 | + "language": "python", |
| 245 | + "name": "python3" |
| 246 | + }, |
| 247 | + "language_info": { |
| 248 | + "codemirror_mode": { |
| 249 | + "name": "ipython", |
| 250 | + "version": 3 |
| 251 | + }, |
| 252 | + "file_extension": ".py", |
| 253 | + "mimetype": "text/x-python", |
| 254 | + "name": "python", |
| 255 | + "nbconvert_exporter": "python", |
| 256 | + "pygments_lexer": "ipython3", |
| 257 | + "version": "3.6.1" |
| 258 | + } |
| 259 | + }, |
| 260 | + "nbformat": 4, |
| 261 | + "nbformat_minor": 2 |
| 262 | +} |
0 commit comments