@@ -25,24 +25,6 @@ public static DenseTensor<T> CreateTensor<T>(T[] data, ReadOnlySpan<int> dimensi
2525 }
2626
2727
28- /// <summary>
29- /// Divides the tensor by float.
30- /// </summary>
31- /// <param name="tensor">The data.</param>
32- /// <param name="value">The value.</param>
33- /// <param name="dimensions">The dimensions.</param>
34- /// <returns></returns>
35- public static DenseTensor < float > DivideTensorByFloat ( this DenseTensor < float > tensor , float value , ReadOnlySpan < int > dimensions )
36- {
37- var divTensor = new DenseTensor < float > ( dimensions ) ;
38- for ( int i = 0 ; i < tensor . Length ; i ++ )
39- {
40- divTensor . SetValue ( i , tensor . GetValue ( i ) / value ) ;
41- }
42- return divTensor ;
43- }
44-
45-
4628 /// <summary>
4729 /// Divides the tensor by float.
4830 /// </summary>
@@ -131,29 +113,15 @@ public static DenseTensor<float> SumTensors(this DenseTensor<float>[] tensors, R
131113 }
132114
133115
134- /// <summary>
135- /// Duplicates the specified tensor.
136- /// </summary>
137- /// <param name="tensor">The data.</param>
138- /// <param name="dimensions">The dimensions.</param>
139- /// <returns></returns>
140- public static DenseTensor < float > Duplicate ( this DenseTensor < float > tensor , ReadOnlySpan < int > dimensions )
141- {
142- var dupTensor = tensor . Concat ( tensor ) . ToArray ( ) ;
143- return CreateTensor ( dupTensor , dimensions ) ;
144- }
145-
146-
147116 /// <summary>
148117 /// Subtracts the tensors.
149118 /// </summary>
150- /// <param name="tensor">The tensor .</param>
119+ /// <param name="tensor">The sample .</param>
151120 /// <param name="subTensor">The sub tensor.</param>
152- /// <param name="dimensions">The dimensions.</param>
153121 /// <returns></returns>
154- public static DenseTensor < float > SubtractTensors ( this DenseTensor < float > tensor , DenseTensor < float > subTensor , ReadOnlySpan < int > dimensions )
122+ public static DenseTensor < float > SubtractTensors ( this DenseTensor < float > tensor , DenseTensor < float > subTensor )
155123 {
156- var result = new DenseTensor < float > ( dimensions ) ;
124+ var result = new DenseTensor < float > ( tensor . Dimensions ) ;
157125 for ( var i = 0 ; i < tensor . Length ; i ++ )
158126 {
159127 result . SetValue ( i , tensor . GetValue ( i ) - subTensor . GetValue ( i ) ) ;
@@ -162,18 +130,6 @@ public static DenseTensor<float> SubtractTensors(this DenseTensor<float> tensor,
162130 }
163131
164132
165- /// <summary>
166- /// Subtracts the tensors.
167- /// </summary>
168- /// <param name="tensor">The sample.</param>
169- /// <param name="subTensor">The sub tensor.</param>
170- /// <returns></returns>
171- public static DenseTensor < float > SubtractTensors ( this DenseTensor < float > tensor , DenseTensor < float > subTensor )
172- {
173- return tensor . SubtractTensors ( subTensor , tensor . Dimensions ) ;
174- }
175-
176-
177133 /// <summary>
178134 /// Reorders the tensor.
179135 /// </summary>
@@ -196,7 +152,6 @@ public static DenseTensor<float> ReorderTensor(this DenseTensor<float> tensor, R
196152 }
197153
198154
199-
200155 /// <summary>
201156 /// Clips the specified Tensor valuse to the specified minimum/maximum.
202157 /// </summary>
@@ -215,10 +170,6 @@ public static DenseTensor<float> Clip(this DenseTensor<float> tensor, float minV
215170 }
216171
217172
218-
219-
220-
221-
222173 /// <summary>
223174 /// Computes the absolute values of the Tensor
224175 /// </summary>
0 commit comments