|
2 | 2 |
|
3 | 3 | `OnnxStack.StableDiffusion` is a library that provides higher-level Stable Diffusion services for use in .NET applications. It offers extensive support for features such as dependency injection, .NET configuration implementations, ASP.NET Core integration, and IHostedService support. |
4 | 4 |
|
5 | | -## Getting Started |
6 | | - |
7 | | -OnnxStack.StableDiffusion can be found via the nuget package manager, download and install it. |
8 | | -``` |
9 | | -PM> Install-Package OnnxStack.StableDiffusion |
10 | | -``` |
11 | | - |
12 | | -### Microsoft.ML.OnnxRuntime |
13 | | -Depending on the devices you have and the platform you are running on, you will want to install the Microsoft.ML.OnnxRuntime package that best suits your needs. |
14 | | - |
15 | | -### CPU-GPU via Microsoft Drirect ML |
16 | | -``` |
17 | | -PM> Install-Package Microsoft.ML.OnnxRuntime.DirectML |
18 | | -``` |
19 | | - |
20 | | -### GPU support for both NVIDIA and AMD? |
21 | | -``` |
22 | | -PM> Install-Package Microsoft.ML.OnnxRuntime.Gpu |
23 | | -``` |
24 | | - |
25 | | - |
26 | | - |
27 | | -### .NET Core Registration |
28 | | - |
29 | | -You can easily integrate `OnnxStack.StableDiffusion` into your application services layer. This registration process sets up the necessary services and loads the `appsettings.json` configuration. |
30 | | - |
31 | | -Example: Registering OnnxStack.StableDiffusion |
32 | | -```csharp |
33 | | -builder.Services.AddOnnxStackStableDiffusion(); |
34 | | -``` |
35 | | - |
36 | | - |
37 | | - |
38 | | - |
39 | | -## .NET Console Application Example |
40 | | - |
41 | | -Required Nuget Packages for example |
42 | | -```nuget |
43 | | -Microsoft.Extensions.Hosting |
44 | | -Microsoft.Extensions.Logging |
45 | | -``` |
46 | | - |
47 | | -```csharp |
48 | | -using Microsoft.Extensions.DependencyInjection; |
49 | | -using Microsoft.Extensions.Hosting; |
50 | | -using OnnxStack.StableDiffusion.Common; |
51 | | -using OnnxStack.StableDiffusion.Config; |
52 | | - |
53 | | -internal class Program |
54 | | -{ |
55 | | - static async Task Main(string[] _) |
56 | | - { |
57 | | - var builder = Host.CreateApplicationBuilder(); |
58 | | - builder.Logging.ClearProviders(); |
59 | | - builder.Services.AddLogging((loggingBuilder) => loggingBuilder.SetMinimumLevel(LogLevel.Error)); |
60 | | - |
61 | | - // Add OnnxStack Stable Diffusion |
62 | | - builder.Services.AddOnnxStackStableDiffusion(); |
63 | | - |
64 | | - // Add AppService |
65 | | - builder.Services.AddHostedService<AppService>(); |
66 | | - |
67 | | - // Start |
68 | | - await builder.Build().RunAsync(); |
69 | | - } |
70 | | -} |
71 | | - |
72 | | -internal class AppService : IHostedService |
73 | | -{ |
74 | | - private readonly string _outputDirectory; |
75 | | - private readonly IStableDiffusionService _stableDiffusionService; |
76 | | - |
77 | | - public AppService(IStableDiffusionService stableDiffusionService) |
78 | | - { |
79 | | - _stableDiffusionService = stableDiffusionService; |
80 | | - _outputDirectory = Path.Combine(Directory.GetCurrentDirectory(), "Images"); |
81 | | - } |
82 | | - |
83 | | - public async Task StartAsync(CancellationToken cancellationToken) |
84 | | - { |
85 | | - Directory.CreateDirectory(_outputDirectory); |
86 | | - |
87 | | - while (true) |
88 | | - { |
89 | | - System.Console.WriteLine("Please type a prompt and press ENTER"); |
90 | | - var prompt = System.Console.ReadLine(); |
91 | | - |
92 | | - System.Console.WriteLine("Please type a negative prompt and press ENTER (optional)"); |
93 | | - var negativePrompt = System.Console.ReadLine(); |
94 | | - |
95 | | - |
96 | | - // Example only, full config depends on model |
97 | | - // appsettings.json is recommended for ease of use |
98 | | - var modelOptions = new ModelOptions |
99 | | - { |
100 | | - Name = "Stable Diffusion 1.5", |
101 | | - ExecutionProvider = ExecutionProvider.DirectML, |
102 | | - ModelConfigurations = new List<OnnxModelSessionConfig> |
103 | | - { |
104 | | - new OnnxModelSessionConfig |
105 | | - { |
106 | | - Type = OnnxModelType.Unet, |
107 | | - OnnxModelPath = "model path" |
108 | | - } |
109 | | - } |
110 | | - }; |
111 | | - |
112 | | - var promptOptions = new PromptOptions |
113 | | - { |
114 | | - Prompt = prompt, |
115 | | - NegativePrompt = negativePrompt, |
116 | | - DiffuserType = DiffuserType.TextToImage, |
117 | | - |
118 | | - // Input for ImageToImage |
119 | | - // InputImage = new InputImage(File.ReadAllBytesAsync("image to image filename")) |
120 | | - }; |
121 | | - |
122 | | - var schedulerOptions = new SchedulerOptions |
123 | | - { |
124 | | - Seed = Random.Shared.Next(), |
125 | | - GuidanceScale = 7.5f, |
126 | | - InferenceSteps = 30, |
127 | | - Height = 512, |
128 | | - Width = 512, |
129 | | - SchedulerType = SchedulerType.LMS, |
130 | | - }; |
131 | | - |
132 | | - |
133 | | - // Generate Image Example |
134 | | - var outputFilename = Path.Combine(_outputDirectory, $"{schedulerOptions.Seed}_{schedulerOptions.SchedulerType}.png"); |
135 | | - var result = await _stableDiffusionService.GenerateAsImageAsync(modelOptions, promptOptions, schedulerOptions); |
136 | | - if (result is not null) |
137 | | - { |
138 | | - // Save image to disk |
139 | | - await result.SaveAsPngAsync(outputFilename); |
140 | | - } |
141 | | - |
142 | | - |
143 | | - |
144 | | - |
145 | | - // Generate Batch Example |
146 | | - var batchOptions = new BatchOptions |
147 | | - { |
148 | | - BatchType = BatchOptionType.Seed, |
149 | | - ValueTo = 20 |
150 | | - }; |
151 | | - |
152 | | - await foreach (var batchResult in _stableDiffusionService.GenerateBatchAsImageAsync(modelOptions, promptOptions, schedulerOptions, batchOptions)) |
153 | | - { |
154 | | - // Save image to disk |
155 | | - await batchResult.SaveAsPngAsync(outputFilename); |
156 | | - } |
157 | | - |
158 | | - |
159 | | - } |
160 | | - } |
161 | | - |
162 | | - public Task StopAsync(CancellationToken cancellationToken) |
163 | | - { |
164 | | - return Task.CompletedTask; |
165 | | - } |
166 | | -} |
167 | | -``` |
168 | | - |
169 | | - |
170 | | -## Configuration |
171 | | -The `appsettings.json` is the easiest option for configuring model sets. Below is an example of `Stable Diffusion 1.5`. |
172 | | -The example adds the necessary paths to each model file required for Stable Diffusion, as well as any model-specific configurations. |
173 | | -Each model can be assigned to its own device, which is handy if you have only a small GPU. This way, you can offload only what you need. There are limitations depending on the version of the `Microsoft.ML.OnnxRuntime` package you are using, but in most cases, you can split the load between CPU and GPU. |
174 | | - |
175 | | -```json |
176 | | -{ |
177 | | - "Logging": { |
178 | | - "LogLevel": { |
179 | | - "Default": "Information", |
180 | | - "Microsoft.AspNetCore": "Warning" |
181 | | - } |
182 | | - }, |
183 | | - |
184 | | - "OnnxStackConfig": { |
185 | | - "Name": "StableDiffusion 1.5", |
186 | | - "IsEnabled": true, |
187 | | - "PadTokenId": 49407, |
188 | | - "BlankTokenId": 49407, |
189 | | - "TokenizerLimit": 77, |
190 | | - "EmbeddingsLength": 768, |
191 | | - "ScaleFactor": 0.18215, |
192 | | - "PipelineType": "StableDiffusion", |
193 | | - "Diffusers": [ |
194 | | - "TextToImage", |
195 | | - "ImageToImage", |
196 | | - "ImageInpaintLegacy" |
197 | | - ], |
198 | | - "DeviceId": 0, |
199 | | - "InterOpNumThreads": 0, |
200 | | - "IntraOpNumThreads": 0, |
201 | | - "ExecutionMode": "ORT_SEQUENTIAL", |
202 | | - "ExecutionProvider": "DirectML", |
203 | | - "ModelConfigurations": [ |
204 | | - { |
205 | | - "Type": "Tokenizer", |
206 | | - "OnnxModelPath": "D:\\Repositories\\stable-diffusion-v1-5\\cliptokenizer.onnx" |
207 | | - }, |
208 | | - { |
209 | | - "Type": "Unet", |
210 | | - "OnnxModelPath": "D:\\Repositories\\stable-diffusion-v1-5\\unet\\model.onnx" |
211 | | - }, |
212 | | - { |
213 | | - "Type": "TextEncoder", |
214 | | - "OnnxModelPath": "D:\\Repositories\\stable-diffusion-v1-5\\text_encoder\\model.onnx" |
215 | | - }, |
216 | | - { |
217 | | - "Type": "VaeEncoder", |
218 | | - "OnnxModelPath": "D:\\Repositories\\stable-diffusion-v1-5\\vae_encoder\\model.onnx" |
219 | | - }, |
220 | | - { |
221 | | - "Type": "VaeDecoder", |
222 | | - "OnnxModelPath": "D:\\Repositories\\stable-diffusion-v1-5\\vae_decoder\\model.onnx" |
223 | | - } |
224 | | - ] |
225 | | - } |
226 | | -} |
227 | | -``` |
228 | 5 |
|
229 | 6 | ### **Prompt** |
230 | 7 |
|
@@ -314,19 +91,14 @@ https://user-images.githubusercontent.com/4353684/285547207-3a7ea067-fcbf-47f0-9 |
314 | 91 | ## ONNX Model Download |
315 | 92 | You will need an ONNX compatible model to use, Hugging Face is a great place to download the Stable Diffusion models |
316 | 93 |
|
317 | | -Download the [ONNX Stable Diffusion models from Hugging Face](https://huggingface.co/models?sort=downloads&search=Stable+Diffusion). |
318 | | - |
319 | | -- [Stable Diffusion Models v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/onnx) |
320 | | -- [Stable Diffusion Models v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/onnx) |
321 | | - |
322 | | - |
323 | | -Once you have selected a model version repo, click `Files and Versions`, then select the `ONNX` branch. If there isn't an ONNX model branch available, use the `main` branch and convert it to ONNX. See the [ONNX conversion tutorial for PyTorch](https://learn.microsoft.com/windows/ai/windows-ml/tutorials/pytorch-convert-model) for more information. |
324 | | - |
325 | | -Clone the model repo: |
326 | | -```text |
327 | | -git lfs install |
328 | | -git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 -b onnx |
329 | | -``` |
| 94 | +- [OpenJourney V4](https://huggingface.co/TheyCallMeHex/OpenJourney-V4-ONNX) |
| 95 | +- [DreamLike PhotoReal 2.0](https://huggingface.co/TheyCallMeHex/DreamLike-PhotoReal-2.0-ONNX) |
| 96 | +- [CyberPunk Anime Diffusion](https://huggingface.co/TheyCallMeHex/Cyberpunk-Anime-Diffusion-ONNX) |
| 97 | +- [InkPunk Diffusion](https://huggingface.co/TheyCallMeHex/Inkpunk-Diffusion-ONNX) |
| 98 | +- [Mo-Di Diffusion](https://huggingface.co/TheyCallMeHex/Mo-Di-Diffusion-ONNX) |
| 99 | +- [epiCRealism](https://huggingface.co/TheyCallMeHex/epiCRealism-ONNX) |
| 100 | +- [Comic Diffusion](https://huggingface.co/TheyCallMeHex/Comic-Diffusion-ONNX) |
| 101 | +- [Redshift Diffusion](https://huggingface.co/TheyCallMeHex/Redshift-Diffusion-ONNX) |
330 | 102 |
|
331 | 103 |
|
332 | 104 | ## Resources |
|
0 commit comments