|
| 1 | +using Microsoft.Extensions.Logging; |
| 2 | +using Microsoft.ML.OnnxRuntime; |
| 3 | +using Microsoft.ML.OnnxRuntime.Tensors; |
| 4 | +using OnnxStack.Core; |
| 5 | +using OnnxStack.Core.Config; |
| 6 | +using OnnxStack.Core.Services; |
| 7 | +using OnnxStack.StableDiffusion.Common; |
| 8 | +using OnnxStack.StableDiffusion.Config; |
| 9 | +using OnnxStack.StableDiffusion.Enums; |
| 10 | +using OnnxStack.StableDiffusion.Helpers; |
| 11 | +using OnnxStack.StableDiffusion.Models; |
| 12 | +using System; |
| 13 | +using System.Collections.Generic; |
| 14 | +using System.Linq; |
| 15 | +using System.Runtime.CompilerServices; |
| 16 | +using System.Threading; |
| 17 | +using System.Threading.Tasks; |
| 18 | + |
| 19 | +namespace OnnxStack.StableDiffusion.Diffusers |
| 20 | +{ |
| 21 | + public abstract class DiffuserBase : IDiffuser |
| 22 | + { |
| 23 | + protected readonly IPromptService _promptService; |
| 24 | + protected readonly IOnnxModelService _onnxModelService; |
| 25 | + protected readonly ILogger<DiffuserBase> _logger; |
| 26 | + |
| 27 | + |
| 28 | + /// <summary> |
| 29 | + /// Initializes a new instance of the <see cref="DiffuserBase"/> class. |
| 30 | + /// </summary> |
| 31 | + /// <param name="onnxModelService">The onnx model service.</param> |
| 32 | + /// <param name="promptService">The prompt service.</param> |
| 33 | + /// <param name="logger">The logger.</param> |
| 34 | + public DiffuserBase(IOnnxModelService onnxModelService, IPromptService promptService, ILogger<DiffuserBase> logger) |
| 35 | + { |
| 36 | + _logger = logger; |
| 37 | + _promptService = promptService; |
| 38 | + _onnxModelService = onnxModelService; |
| 39 | + } |
| 40 | + |
| 41 | + /// <summary> |
| 42 | + /// Gets the type of the diffuser. |
| 43 | + /// </summary> |
| 44 | + public abstract DiffuserType DiffuserType { get; } |
| 45 | + |
| 46 | + /// <summary> |
| 47 | + /// Gets the type of the pipeline. |
| 48 | + /// </summary> |
| 49 | + public abstract DiffuserPipelineType PipelineType { get; } |
| 50 | + |
| 51 | + /// <summary> |
| 52 | + /// Gets the scheduler. |
| 53 | + /// </summary> |
| 54 | + /// <param name="options">The options.</param> |
| 55 | + /// <returns></returns> |
| 56 | + protected abstract IScheduler GetScheduler(SchedulerOptions options); |
| 57 | + |
| 58 | + /// <summary> |
| 59 | + /// Gets the timesteps. |
| 60 | + /// </summary> |
| 61 | + /// <param name="options">The options.</param> |
| 62 | + /// <param name="scheduler">The scheduler.</param> |
| 63 | + /// <returns></returns> |
| 64 | + protected abstract IReadOnlyList<int> GetTimesteps(SchedulerOptions options, IScheduler scheduler); |
| 65 | + |
| 66 | + |
| 67 | + /// <summary> |
| 68 | + /// Prepares the input latents. |
| 69 | + /// </summary> |
| 70 | + /// <param name="model">The model.</param> |
| 71 | + /// <param name="prompt">The prompt.</param> |
| 72 | + /// <param name="options">The options.</param> |
| 73 | + /// <param name="scheduler">The scheduler.</param> |
| 74 | + /// <param name="timesteps">The timesteps.</param> |
| 75 | + /// <returns></returns> |
| 76 | + protected abstract Task<DenseTensor<float>> PrepareLatents(IModelOptions model, PromptOptions prompt, SchedulerOptions options, IScheduler scheduler, IReadOnlyList<int> timesteps); |
| 77 | + |
| 78 | + |
| 79 | + /// <summary> |
| 80 | + /// Called on each Scheduler step. |
| 81 | + /// </summary> |
| 82 | + /// <param name="modelOptions">The model options.</param> |
| 83 | + /// <param name="promptOptions">The prompt options.</param> |
| 84 | + /// <param name="schedulerOptions">The scheduler options.</param> |
| 85 | + /// <param name="promptEmbeddings">The prompt embeddings.</param> |
| 86 | + /// <param name="performGuidance">if set to <c>true</c> [perform guidance].</param> |
| 87 | + /// <param name="progressCallback">The progress callback.</param> |
| 88 | + /// <param name="cancellationToken">The cancellation token.</param> |
| 89 | + /// <returns></returns> |
| 90 | + protected abstract Task<DenseTensor<float>> SchedulerStep(IModelOptions modelOptions, PromptOptions promptOptions, SchedulerOptions schedulerOptions, DenseTensor<float> promptEmbeddings, bool performGuidance, Action<int, int> progressCallback = null, CancellationToken cancellationToken = default); |
| 91 | + |
| 92 | + |
| 93 | + /// <summary> |
| 94 | + /// Rund the stable diffusion loop |
| 95 | + /// </summary> |
| 96 | + /// <param name="promptOptions">The prompt options.</param> |
| 97 | + /// <param name="schedulerOptions">The scheduler options.</param> |
| 98 | + /// <param name="progress">The progress.</param> |
| 99 | + /// <param name="cancellationToken">The cancellation token.</param> |
| 100 | + /// <returns></returns> |
| 101 | + public virtual async Task<DenseTensor<float>> DiffuseAsync(IModelOptions modelOptions, PromptOptions promptOptions, SchedulerOptions schedulerOptions, Action<int, int> progressCallback = null, CancellationToken cancellationToken = default) |
| 102 | + { |
| 103 | + // Create random seed if none was set |
| 104 | + schedulerOptions.Seed = schedulerOptions.Seed > 0 ? schedulerOptions.Seed : Random.Shared.Next(); |
| 105 | + |
| 106 | + var diffuseTime = _logger?.LogBegin("Begin..."); |
| 107 | + _logger?.Log($"Model: {modelOptions.Name}, Pipeline: {modelOptions.PipelineType}, Diffuser: {promptOptions.DiffuserType}, Scheduler: {schedulerOptions.SchedulerType}"); |
| 108 | + |
| 109 | + // Check guidance |
| 110 | + var performGuidance = ShouldPerformGuidance(schedulerOptions); |
| 111 | + |
| 112 | + // Process prompts |
| 113 | + var promptEmbeddings = await _promptService.CreatePromptAsync(modelOptions, promptOptions, performGuidance); |
| 114 | + |
| 115 | + // Run Scheduler steps |
| 116 | + var schedulerResult = await SchedulerStep(modelOptions, promptOptions, schedulerOptions, promptEmbeddings, performGuidance, progressCallback, cancellationToken); |
| 117 | + |
| 118 | + _logger?.LogEnd($"End", diffuseTime); |
| 119 | + |
| 120 | + return schedulerResult; |
| 121 | + } |
| 122 | + |
| 123 | + |
| 124 | + /// <summary> |
| 125 | + /// Runs the stable diffusion batch loop |
| 126 | + /// </summary> |
| 127 | + /// <param name="modelOptions">The model options.</param> |
| 128 | + /// <param name="promptOptions">The prompt options.</param> |
| 129 | + /// <param name="schedulerOptions">The scheduler options.</param> |
| 130 | + /// <param name="batchOptions">The batch options.</param> |
| 131 | + /// <param name="progressCallback">The progress callback.</param> |
| 132 | + /// <param name="cancellationToken">The cancellation token.</param> |
| 133 | + /// <returns></returns> |
| 134 | + /// <exception cref="System.NotImplementedException"></exception> |
| 135 | + public virtual async IAsyncEnumerable<BatchResult> DiffuseBatchAsync(IModelOptions modelOptions, PromptOptions promptOptions, SchedulerOptions schedulerOptions, BatchOptions batchOptions, Action<int, int, int, int> progressCallback = null, [EnumeratorCancellation] CancellationToken cancellationToken = default) |
| 136 | + { |
| 137 | + // Create random seed if none was set |
| 138 | + schedulerOptions.Seed = schedulerOptions.Seed > 0 ? schedulerOptions.Seed : Random.Shared.Next(); |
| 139 | + |
| 140 | + var diffuseBatchTime = _logger?.LogBegin("Begin..."); |
| 141 | + _logger?.Log($"Model: {modelOptions.Name}, Pipeline: {modelOptions.PipelineType}, Diffuser: {promptOptions.DiffuserType}, Scheduler: {schedulerOptions.SchedulerType}"); |
| 142 | + |
| 143 | + // Check guidance |
| 144 | + var performGuidance = ShouldPerformGuidance(schedulerOptions); |
| 145 | + |
| 146 | + // Process prompts |
| 147 | + var promptEmbeddings = await _promptService.CreatePromptAsync(modelOptions, promptOptions, performGuidance); |
| 148 | + |
| 149 | + // Generate batch options |
| 150 | + var batchSchedulerOptions = BatchGenerator.GenerateBatch(modelOptions, batchOptions, schedulerOptions); |
| 151 | + |
| 152 | + var batchIndex = 1; |
| 153 | + var schedulerCallback = (int step, int steps) => progressCallback?.Invoke(batchIndex, batchSchedulerOptions.Count, step, steps); |
| 154 | + foreach (var batchSchedulerOption in batchSchedulerOptions) |
| 155 | + { |
| 156 | + yield return new BatchResult(batchSchedulerOption, await SchedulerStep(modelOptions, promptOptions, batchSchedulerOption, promptEmbeddings, performGuidance, schedulerCallback, cancellationToken)); |
| 157 | + batchIndex++; |
| 158 | + } |
| 159 | + |
| 160 | + _logger?.LogEnd($"End", diffuseBatchTime); |
| 161 | + } |
| 162 | + |
| 163 | + |
| 164 | + /// <summary> |
| 165 | + /// Chech if we should run guidance. |
| 166 | + /// </summary> |
| 167 | + /// <param name="schedulerOptions">The scheduler options.</param> |
| 168 | + /// <returns></returns> |
| 169 | + protected virtual bool ShouldPerformGuidance(SchedulerOptions schedulerOptions) |
| 170 | + { |
| 171 | + return schedulerOptions.GuidanceScale > 1f; |
| 172 | + } |
| 173 | + |
| 174 | + |
| 175 | + /// <summary> |
| 176 | + /// Performs classifier free guidance |
| 177 | + /// </summary> |
| 178 | + /// <param name="noisePredUncond">The noise pred.</param> |
| 179 | + /// <param name="noisePredText">The noise pred text.</param> |
| 180 | + /// <param name="guidanceScale">The guidance scale.</param> |
| 181 | + /// <returns></returns> |
| 182 | + protected virtual DenseTensor<float> PerformGuidance(DenseTensor<float> noisePrediction, float guidanceScale) |
| 183 | + { |
| 184 | + // Split Prompt and Negative Prompt predictions |
| 185 | + var dimensions = noisePrediction.Dimensions.ToArray(); |
| 186 | + dimensions[0] /= 2; |
| 187 | + |
| 188 | + var length = (int)noisePrediction.Length / 2; |
| 189 | + var noisePredCond = new DenseTensor<float>(noisePrediction.Buffer[length..], dimensions); |
| 190 | + var noisePredUncond = new DenseTensor<float>(noisePrediction.Buffer[..length], dimensions); |
| 191 | + return noisePredUncond |
| 192 | + .Add(noisePredCond |
| 193 | + .Subtract(noisePredUncond) |
| 194 | + .MultiplyBy(guidanceScale)); |
| 195 | + } |
| 196 | + |
| 197 | + |
| 198 | + /// <summary> |
| 199 | + /// Decodes the latents. |
| 200 | + /// </summary> |
| 201 | + /// <param name="model">The model.</param> |
| 202 | + /// <param name="prompt">The prompt.</param> |
| 203 | + /// <param name="options">The options.</param> |
| 204 | + /// <param name="latents">The latents.</param> |
| 205 | + /// <returns></returns> |
| 206 | + protected virtual async Task<DenseTensor<float>> DecodeLatents(IModelOptions model, PromptOptions prompt, SchedulerOptions options, DenseTensor<float> latents) |
| 207 | + { |
| 208 | + var timestamp = _logger?.LogBegin("Begin..."); |
| 209 | + |
| 210 | + // Scale and decode the image latents with vae. |
| 211 | + latents = latents.MultiplyBy(1.0f / model.ScaleFactor); |
| 212 | + |
| 213 | + var images = prompt.BatchCount > 1 |
| 214 | + ? latents.Split(prompt.BatchCount) |
| 215 | + : new[] { latents }; |
| 216 | + var imageTensors = new List<DenseTensor<float>>(); |
| 217 | + foreach (var image in images) |
| 218 | + { |
| 219 | + var inputNames = _onnxModelService.GetInputNames(model, OnnxModelType.VaeDecoder); |
| 220 | + var inputParameters = CreateInputParameters(NamedOnnxValue.CreateFromTensor(inputNames[0], image)); |
| 221 | + |
| 222 | + // Run inference. |
| 223 | + using (var inferResult = await _onnxModelService.RunInferenceAsync(model, OnnxModelType.VaeDecoder, inputParameters)) |
| 224 | + { |
| 225 | + var resultTensor = inferResult.FirstElementAs<DenseTensor<float>>(); |
| 226 | + imageTensors.Add(resultTensor.ToDenseTensor()); |
| 227 | + } |
| 228 | + } |
| 229 | + |
| 230 | + var result = prompt.BatchCount > 1 |
| 231 | + ? imageTensors.Join() |
| 232 | + : imageTensors.FirstOrDefault(); |
| 233 | + _logger?.LogEnd("End", timestamp); |
| 234 | + return result; |
| 235 | + } |
| 236 | + |
| 237 | + |
| 238 | + /// <summary> |
| 239 | + /// Creates the timestep NamedOnnxValue based on its NodeMetadata type. |
| 240 | + /// </summary> |
| 241 | + /// <param name="nodeMetadata">The node metadata.</param> |
| 242 | + /// <param name="timestepInputName">Name of the timestep input.</param> |
| 243 | + /// <param name="timestep">The timestep.</param> |
| 244 | + /// <returns></returns> |
| 245 | + protected static NamedOnnxValue CreateTimestepNamedOnnxValue(IReadOnlyDictionary<string, NodeMetadata> nodeMetadata, string timestepInputName, int timestep) |
| 246 | + { |
| 247 | + // Some models support Long or Float, could be more but fornow just support these 2 |
| 248 | + var timestepMetaData = nodeMetadata[timestepInputName]; |
| 249 | + return timestepMetaData.ElementDataType == TensorElementType.Int64 |
| 250 | + ? NamedOnnxValue.CreateFromTensor(timestepInputName, new DenseTensor<long>(new long[] { timestep }, new int[] { 1 })) |
| 251 | + : NamedOnnxValue.CreateFromTensor(timestepInputName, new DenseTensor<float>(new float[] { timestep }, new int[] { 1 })); |
| 252 | + } |
| 253 | + |
| 254 | + |
| 255 | + /// <summary> |
| 256 | + /// Helper for creating the input parameters. |
| 257 | + /// </summary> |
| 258 | + /// <param name="parameters">The parameters.</param> |
| 259 | + /// <returns></returns> |
| 260 | + protected static IReadOnlyList<NamedOnnxValue> CreateInputParameters(params NamedOnnxValue[] parameters) |
| 261 | + { |
| 262 | + return parameters.ToList(); |
| 263 | + } |
| 264 | + } |
| 265 | +} |
0 commit comments