|
15 | 15 | tn_ref = TensorNetworkModel(instance; optimizer) |
16 | 16 |
|
17 | 17 | # Does not marginalize any var |
18 | | - mmap = MMAPModel(instance; queryvars = collect(1:instance.nvars), optimizer) |
| 18 | + set_query!(instance, collect(1:instance.nvars)) |
| 19 | + mmap = MMAPModel(instance; optimizer) |
19 | 20 | @debug(mmap) |
20 | 21 | @test maximum_logp(tn_ref) ≈ maximum_logp(mmap) |
21 | 22 |
|
22 | 23 | # Marginalize all vars |
23 | | - mmap2 = MMAPModel(instance; queryvars = Int[], optimizer) |
| 24 | + set_query!(instance, Int[]) |
| 25 | + mmap2 = MMAPModel(instance; optimizer) |
24 | 26 | @debug(mmap2) |
25 | 27 | @test Array(probability(tn_ref))[] ≈ exp(maximum_logp(mmap2)[]) |
26 | 28 |
|
27 | 29 | # Does not optimize over open vertices |
28 | | - mmap3 = MMAPModel(instance; queryvars = setdiff(1:instance.nvars, [2, 4, 6]), optimizer) |
| 30 | + set_query!(instance, setdiff(1:instance.nvars, [2, 4, 6])) |
| 31 | + mmap3 = MMAPModel(instance; optimizer) |
29 | 32 | @debug(mmap3) |
30 | 33 | logp, config = most_probable_config(mmap3) |
31 | 34 | @test log_probability(mmap3, config) ≈ logp |
|
42 | 45 | @info "Testing: $problem_name" |
43 | 46 | model_filepath, evidence_filepath, query_filepath, solution_filepath = get_instance_filepaths(problem_name, "MMAP") |
44 | 47 | instance = read_instance(model_filepath; evidence_filepath, query_filepath, solution_filepath) |
45 | | - model = MMAPModel(instance; queryvars = instance.queryvars, optimizer) |
| 48 | + model = MMAPModel(instance; optimizer) |
46 | 49 | _, solution = most_probable_config(model) |
47 | 50 | @test solution == instance.reference_solution |
48 | 51 | end |
|
0 commit comments