|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 9, |
| 6 | + "id": "d22b455e-8d88-49cd-82e6-55838d526cbc", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import geocoder\n", |
| 11 | + "\n", |
| 12 | + "geocode_res = geocoder.osm('1 Apple Park Way, Cupertino, California, United States')" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 21, |
| 18 | + "id": "1caf59dc-c1f8-4bc7-b478-39edf657d9b8", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [ |
| 21 | + { |
| 22 | + "name": "stdout", |
| 23 | + "output_type": "stream", |
| 24 | + "text": [ |
| 25 | + "[-122.010747, 37.3317424]\n" |
| 26 | + ] |
| 27 | + } |
| 28 | + ], |
| 29 | + "source": [ |
| 30 | + "coordinates = geocode_res.geometry['coordinates']\n", |
| 31 | + "print(coordinates)" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": 42, |
| 37 | + "id": "ddedf165-a1cd-4fb8-9d42-175eb5a56dc5", |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [ |
| 40 | + { |
| 41 | + "data": { |
| 42 | + "text/html": [ |
| 43 | + "<div>\n", |
| 44 | + "<style scoped>\n", |
| 45 | + " .dataframe tbody tr th:only-of-type {\n", |
| 46 | + " vertical-align: middle;\n", |
| 47 | + " }\n", |
| 48 | + "\n", |
| 49 | + " .dataframe tbody tr th {\n", |
| 50 | + " vertical-align: top;\n", |
| 51 | + " }\n", |
| 52 | + "\n", |
| 53 | + " .dataframe thead th {\n", |
| 54 | + " text-align: right;\n", |
| 55 | + " }\n", |
| 56 | + "</style>\n", |
| 57 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 58 | + " <thead>\n", |
| 59 | + " <tr style=\"text-align: right;\">\n", |
| 60 | + " <th></th>\n", |
| 61 | + " <th>cab</th>\n", |
| 62 | + " <th>lat</th>\n", |
| 63 | + " <th>long</th>\n", |
| 64 | + " <th>tm</th>\n", |
| 65 | + " </tr>\n", |
| 66 | + " </thead>\n", |
| 67 | + " <tbody>\n", |
| 68 | + " <tr>\n", |
| 69 | + " <th>0</th>\n", |
| 70 | + " <td>cab_26</td>\n", |
| 71 | + " <td>43.602508</td>\n", |
| 72 | + " <td>39.715685</td>\n", |
| 73 | + " <td>14:47:44</td>\n", |
| 74 | + " </tr>\n", |
| 75 | + " <tr>\n", |
| 76 | + " <th>1</th>\n", |
| 77 | + " <td>cab_112</td>\n", |
| 78 | + " <td>43.582243</td>\n", |
| 79 | + " <td>39.752077</td>\n", |
| 80 | + " <td>14:47:55</td>\n", |
| 81 | + " </tr>\n", |
| 82 | + " <tr>\n", |
| 83 | + " <th>2</th>\n", |
| 84 | + " <td>cab_26</td>\n", |
| 85 | + " <td>43.607480</td>\n", |
| 86 | + " <td>39.721521</td>\n", |
| 87 | + " <td>14:49:11</td>\n", |
| 88 | + " </tr>\n", |
| 89 | + " <tr>\n", |
| 90 | + " <th>3</th>\n", |
| 91 | + " <td>cab_112</td>\n", |
| 92 | + " <td>43.579258</td>\n", |
| 93 | + " <td>39.758944</td>\n", |
| 94 | + " <td>14:49:51</td>\n", |
| 95 | + " </tr>\n", |
| 96 | + " <tr>\n", |
| 97 | + " <th>4</th>\n", |
| 98 | + " <td>cab_112</td>\n", |
| 99 | + " <td>43.574906</td>\n", |
| 100 | + " <td>39.766325</td>\n", |
| 101 | + " <td>14:51:53</td>\n", |
| 102 | + " </tr>\n", |
| 103 | + " <tr>\n", |
| 104 | + " <th>5</th>\n", |
| 105 | + " <td>cab_26</td>\n", |
| 106 | + " <td>43.612203</td>\n", |
| 107 | + " <td>39.720491</td>\n", |
| 108 | + " <td>14:52:48</td>\n", |
| 109 | + " </tr>\n", |
| 110 | + " </tbody>\n", |
| 111 | + "</table>\n", |
| 112 | + "</div>" |
| 113 | + ], |
| 114 | + "text/plain": [ |
| 115 | + " cab lat long tm\n", |
| 116 | + "0 cab_26 43.602508 39.715685 14:47:44\n", |
| 117 | + "1 cab_112 43.582243 39.752077 14:47:55\n", |
| 118 | + "2 cab_26 43.607480 39.721521 14:49:11\n", |
| 119 | + "3 cab_112 43.579258 39.758944 14:49:51\n", |
| 120 | + "4 cab_112 43.574906 39.766325 14:51:53\n", |
| 121 | + "5 cab_26 43.612203 39.720491 14:52:48" |
| 122 | + ] |
| 123 | + }, |
| 124 | + "metadata": {}, |
| 125 | + "output_type": "display_data" |
| 126 | + } |
| 127 | + ], |
| 128 | + "source": [ |
| 129 | + "import pandas as pd\n", |
| 130 | + "\n", |
| 131 | + "df = pd.read_csv(\"ex09_geolocation_moving_obj.csv\", names=['cab', 'lat', 'long', 'tm'])\n", |
| 132 | + "display(df)" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": 43, |
| 138 | + "id": "9f5412aa-d334-45a5-af1f-b430f161413f", |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [ |
| 141 | + { |
| 142 | + "data": { |
| 143 | + "text/html": [ |
| 144 | + "<div>\n", |
| 145 | + "<style scoped>\n", |
| 146 | + " .dataframe tbody tr th:only-of-type {\n", |
| 147 | + " vertical-align: middle;\n", |
| 148 | + " }\n", |
| 149 | + "\n", |
| 150 | + " .dataframe tbody tr th {\n", |
| 151 | + " vertical-align: top;\n", |
| 152 | + " }\n", |
| 153 | + "\n", |
| 154 | + " .dataframe thead th {\n", |
| 155 | + " text-align: right;\n", |
| 156 | + " }\n", |
| 157 | + "</style>\n", |
| 158 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 159 | + " <thead>\n", |
| 160 | + " <tr style=\"text-align: right;\">\n", |
| 161 | + " <th></th>\n", |
| 162 | + " <th>cab</th>\n", |
| 163 | + " <th>lat</th>\n", |
| 164 | + " <th>long</th>\n", |
| 165 | + " <th>tm</th>\n", |
| 166 | + " </tr>\n", |
| 167 | + " </thead>\n", |
| 168 | + " <tbody>\n", |
| 169 | + " <tr>\n", |
| 170 | + " <th>5</th>\n", |
| 171 | + " <td>cab_26</td>\n", |
| 172 | + " <td>43.612203</td>\n", |
| 173 | + " <td>39.720491</td>\n", |
| 174 | + " <td>14:52:48</td>\n", |
| 175 | + " </tr>\n", |
| 176 | + " <tr>\n", |
| 177 | + " <th>4</th>\n", |
| 178 | + " <td>cab_112</td>\n", |
| 179 | + " <td>43.574906</td>\n", |
| 180 | + " <td>39.766325</td>\n", |
| 181 | + " <td>14:51:53</td>\n", |
| 182 | + " </tr>\n", |
| 183 | + " </tbody>\n", |
| 184 | + "</table>\n", |
| 185 | + "</div>" |
| 186 | + ], |
| 187 | + "text/plain": [ |
| 188 | + " cab lat long tm\n", |
| 189 | + "5 cab_26 43.612203 39.720491 14:52:48\n", |
| 190 | + "4 cab_112 43.574906 39.766325 14:51:53" |
| 191 | + ] |
| 192 | + }, |
| 193 | + "metadata": {}, |
| 194 | + "output_type": "display_data" |
| 195 | + } |
| 196 | + ], |
| 197 | + "source": [ |
| 198 | + "latestrows = df.sort_values(['cab', 'tm'], ascending=False).drop_duplicates('cab')\n", |
| 199 | + "display(latestrows)" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": 44, |
| 205 | + "id": "dee21ad0-9ffb-42b5-bdc4-c7fcfa828427", |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [ |
| 208 | + { |
| 209 | + "data": { |
| 210 | + "text/plain": [ |
| 211 | + "[['cab_26', 43.612203, 39.720491, '14:52:48'],\n", |
| 212 | + " ['cab_112', 43.574906, 39.766325, '14:51:53']]" |
| 213 | + ] |
| 214 | + }, |
| 215 | + "metadata": {}, |
| 216 | + "output_type": "display_data" |
| 217 | + } |
| 218 | + ], |
| 219 | + "source": [ |
| 220 | + "latestrows_numpy = latestrows.values\n", |
| 221 | + "latestrows = latestrows_numpy.tolist()\n", |
| 222 | + "display(latestrows)" |
| 223 | + ] |
| 224 | + }, |
| 225 | + { |
| 226 | + "cell_type": "code", |
| 227 | + "execution_count": 45, |
| 228 | + "id": "eaf3773d-9880-4026-86e0-0758a998fa2b", |
| 229 | + "metadata": {}, |
| 230 | + "outputs": [ |
| 231 | + { |
| 232 | + "name": "stdout", |
| 233 | + "output_type": "stream", |
| 234 | + "text": [ |
| 235 | + "cab_26: 4636\n", |
| 236 | + "cab_112: 1015\n" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "data": { |
| 241 | + "text/plain": [ |
| 242 | + "[['cab_26', 43.612203, 39.720491, '14:52:48', 4636],\n", |
| 243 | + " ['cab_112', 43.574906, 39.766325, '14:51:53', 1015]]" |
| 244 | + ] |
| 245 | + }, |
| 246 | + "metadata": {}, |
| 247 | + "output_type": "display_data" |
| 248 | + } |
| 249 | + ], |
| 250 | + "source": [ |
| 251 | + "# calculate the distance between each cab and a pickup place\n", |
| 252 | + "from geopy.distance import distance\n", |
| 253 | + "\n", |
| 254 | + "pick_up = (43.578854, 39.754995)\n", |
| 255 | + "\n", |
| 256 | + "for i, row in enumerate(latestrows):\n", |
| 257 | + " lat = row[1]\n", |
| 258 | + " long = row[2]\n", |
| 259 | + " cab = (lat, long)\n", |
| 260 | + " dist_meters = distance(pick_up, cab).m\n", |
| 261 | + "\n", |
| 262 | + " print(row[0] + ':', round(dist_meters))\n", |
| 263 | + " latestrows[i].append(round(dist_meters))\n", |
| 264 | + "\n", |
| 265 | + "display(latestrows)" |
| 266 | + ] |
| 267 | + }, |
| 268 | + { |
| 269 | + "cell_type": "code", |
| 270 | + "execution_count": 46, |
| 271 | + "id": "e12cf848-4505-40c1-ae6e-a9a2c2c962e1", |
| 272 | + "metadata": {}, |
| 273 | + "outputs": [ |
| 274 | + { |
| 275 | + "name": "stdout", |
| 276 | + "output_type": "stream", |
| 277 | + "text": [ |
| 278 | + "The closest cab is: cab_112 . Distance in meters: 1015\n" |
| 279 | + ] |
| 280 | + } |
| 281 | + ], |
| 282 | + "source": [ |
| 283 | + "closest_cab = min(latestrows, key=lambda x: x[4])\n", |
| 284 | + "print('The closest cab is: ', closest_cab[0], '. Distance in meters: ', closest_cab[4])" |
| 285 | + ] |
| 286 | + }, |
| 287 | + { |
| 288 | + "cell_type": "code", |
| 289 | + "execution_count": null, |
| 290 | + "id": "61ce9cf6-d5e7-47d3-b836-a2daf422ab23", |
| 291 | + "metadata": {}, |
| 292 | + "outputs": [], |
| 293 | + "source": [] |
| 294 | + } |
| 295 | + ], |
| 296 | + "metadata": { |
| 297 | + "kernelspec": { |
| 298 | + "display_name": "Python 3 (ipykernel)", |
| 299 | + "language": "python", |
| 300 | + "name": "python3" |
| 301 | + }, |
| 302 | + "language_info": { |
| 303 | + "codemirror_mode": { |
| 304 | + "name": "ipython", |
| 305 | + "version": 3 |
| 306 | + }, |
| 307 | + "file_extension": ".py", |
| 308 | + "mimetype": "text/x-python", |
| 309 | + "name": "python", |
| 310 | + "nbconvert_exporter": "python", |
| 311 | + "pygments_lexer": "ipython3", |
| 312 | + "version": "3.9.17" |
| 313 | + } |
| 314 | + }, |
| 315 | + "nbformat": 4, |
| 316 | + "nbformat_minor": 5 |
| 317 | +} |
0 commit comments