|
347 | 347 | "# Filter out orders not present in `orders` list by checkitn\n", |
348 | 348 | "sum(price * quantity for _, date, _, _, _, price, quantity in order_details_right if date != None)" |
349 | 349 | ] |
| 350 | + }, |
| 351 | + { |
| 352 | + "cell_type": "markdown", |
| 353 | + "id": "c91aeb71-ec59-49f4-9610-ae13b635d5dc", |
| 354 | + "metadata": {}, |
| 355 | + "source": [ |
| 356 | + "## Concatenating NumPy Arrays" |
| 357 | + ] |
| 358 | + }, |
| 359 | + { |
| 360 | + "cell_type": "code", |
| 361 | + "execution_count": 2, |
| 362 | + "id": "6c7bf128-fdf3-4933-9e4f-4be84fcc021e", |
| 363 | + "metadata": {}, |
| 364 | + "outputs": [ |
| 365 | + { |
| 366 | + "data": { |
| 367 | + "text/plain": [ |
| 368 | + "array([[2700, 3000, 3000],\n", |
| 369 | + " [2600, 2800, 2800],\n", |
| 370 | + " [2300, 2500, 2500]])" |
| 371 | + ] |
| 372 | + }, |
| 373 | + "metadata": {}, |
| 374 | + "output_type": "display_data" |
| 375 | + } |
| 376 | + ], |
| 377 | + "source": [ |
| 378 | + "import numpy as np\n", |
| 379 | + "\n", |
| 380 | + "jeff_salary = [2700, 3000, 3000]\n", |
| 381 | + "nick_salary = [2600, 2800, 2800]\n", |
| 382 | + "tom_salary = [2300, 2500, 2500]\n", |
| 383 | + "\n", |
| 384 | + "base_salary1 = np.array([jeff_salary, nick_salary, tom_salary])\n", |
| 385 | + "display(base_salary1)" |
| 386 | + ] |
| 387 | + }, |
| 388 | + { |
| 389 | + "cell_type": "code", |
| 390 | + "execution_count": 3, |
| 391 | + "id": "b628098a-882a-44b2-a3af-0f892e8aabbd", |
| 392 | + "metadata": {}, |
| 393 | + "outputs": [ |
| 394 | + { |
| 395 | + "data": { |
| 396 | + "text/plain": [ |
| 397 | + "array([[2200, 2400, 3000],\n", |
| 398 | + " [2500, 2700, 2700]])" |
| 399 | + ] |
| 400 | + }, |
| 401 | + "metadata": {}, |
| 402 | + "output_type": "display_data" |
| 403 | + } |
| 404 | + ], |
| 405 | + "source": [ |
| 406 | + "maya_salary = [2200, 2400, 3000]\n", |
| 407 | + "john_salary = [2500, 2700, 2700]\n", |
| 408 | + "\n", |
| 409 | + "base_salary2 = np.array([maya_salary, john_salary])\n", |
| 410 | + "display(base_salary2)" |
| 411 | + ] |
| 412 | + }, |
| 413 | + { |
| 414 | + "cell_type": "code", |
| 415 | + "execution_count": 5, |
| 416 | + "id": "a4c46e08-f7d9-4574-af52-d4de13e70484", |
| 417 | + "metadata": {}, |
| 418 | + "outputs": [ |
| 419 | + { |
| 420 | + "data": { |
| 421 | + "text/plain": [ |
| 422 | + "array([[2700, 3000, 3000],\n", |
| 423 | + " [2600, 2800, 2800],\n", |
| 424 | + " [2300, 2500, 2500],\n", |
| 425 | + " [2200, 2400, 3000],\n", |
| 426 | + " [2500, 2700, 2700]])" |
| 427 | + ] |
| 428 | + }, |
| 429 | + "metadata": {}, |
| 430 | + "output_type": "display_data" |
| 431 | + } |
| 432 | + ], |
| 433 | + "source": [ |
| 434 | + "base_salary = np.concatenate((base_salary1, base_salary2), axis=0) # axis=0 concatenates vertically\n", |
| 435 | + "display(base_salary)" |
| 436 | + ] |
| 437 | + }, |
| 438 | + { |
| 439 | + "cell_type": "markdown", |
| 440 | + "id": "07b927fa-e087-4ac4-bd6b-904332666147", |
| 441 | + "metadata": {}, |
| 442 | + "source": [ |
| 443 | + "With both salary arrays merged into one, we can now open scenario for a case where a single month salary per employee is also introduced.\n", |
| 444 | + "In this case we want to concatenate an array of salaries that holds the same order as of employees." |
| 445 | + ] |
| 446 | + }, |
| 447 | + { |
| 448 | + "cell_type": "code", |
| 449 | + "execution_count": 6, |
| 450 | + "id": "c99a4a45-f87d-4d5a-b9cc-e242f97a505f", |
| 451 | + "metadata": {}, |
| 452 | + "outputs": [], |
| 453 | + "source": [ |
| 454 | + "# Introduces a new month salary for each employee where each item (array in the 2nd dimension) belongs to an employee\n", |
| 455 | + "new_month_salary = [\n", |
| 456 | + " [3000],\n", |
| 457 | + " [2900],\n", |
| 458 | + " [2500],\n", |
| 459 | + " [2500],\n", |
| 460 | + " [2700]]" |
| 461 | + ] |
| 462 | + }, |
| 463 | + { |
| 464 | + "cell_type": "code", |
| 465 | + "execution_count": 8, |
| 466 | + "id": "ed678c17-6ece-4b47-b31d-827232dff8c7", |
| 467 | + "metadata": {}, |
| 468 | + "outputs": [ |
| 469 | + { |
| 470 | + "data": { |
| 471 | + "text/plain": [ |
| 472 | + "array([[2700, 3000, 3000, 3000],\n", |
| 473 | + " [2600, 2800, 2800, 2900],\n", |
| 474 | + " [2300, 2500, 2500, 2500],\n", |
| 475 | + " [2200, 2400, 3000, 2500],\n", |
| 476 | + " [2500, 2700, 2700, 2700]])" |
| 477 | + ] |
| 478 | + }, |
| 479 | + "metadata": {}, |
| 480 | + "output_type": "display_data" |
| 481 | + } |
| 482 | + ], |
| 483 | + "source": [ |
| 484 | + "# Concatenates the `new_month_salary` to the `base_salary` array. Uses axis=1 to concatenate horizontally\n", |
| 485 | + "base_salary = np.concatenate((base_salary, new_month_salary), axis=1)\n", |
| 486 | + "display(base_salary)" |
| 487 | + ] |
| 488 | + }, |
| 489 | + { |
| 490 | + "cell_type": "code", |
| 491 | + "execution_count": 10, |
| 492 | + "id": "9ba4aee1-389f-494e-b25d-3278e6219ace", |
| 493 | + "metadata": {}, |
| 494 | + "outputs": [ |
| 495 | + { |
| 496 | + "data": { |
| 497 | + "text/plain": [ |
| 498 | + "array([[2700, 3000, 3000, 3000, 3000, 3200],\n", |
| 499 | + " [2600, 2800, 2800, 2900, 2900, 2900],\n", |
| 500 | + " [2300, 2500, 2500, 2500, 2500, 2900],\n", |
| 501 | + " [2200, 2400, 3000, 2500, 3000, 3000],\n", |
| 502 | + " [2500, 2700, 2700, 2700, 2900, 2900]])" |
| 503 | + ] |
| 504 | + }, |
| 505 | + "metadata": {}, |
| 506 | + "output_type": "display_data" |
| 507 | + } |
| 508 | + ], |
| 509 | + "source": [ |
| 510 | + "upcoming_months = [\n", |
| 511 | + " [3000, 3200],\n", |
| 512 | + " [2900, 2900],\n", |
| 513 | + " [2500, 2900],\n", |
| 514 | + " [3000, 3000],\n", |
| 515 | + " [2900, 2900],\n", |
| 516 | + "]\n", |
| 517 | + "\n", |
| 518 | + "base_salary = np.concatenate((base_salary, upcoming_months), axis=1)\n", |
| 519 | + "display(base_salary)" |
| 520 | + ] |
| 521 | + }, |
| 522 | + { |
| 523 | + "cell_type": "code", |
| 524 | + "execution_count": 13, |
| 525 | + "id": "4c73221b-625b-40cd-a305-32a3a4e3dda3", |
| 526 | + "metadata": {}, |
| 527 | + "outputs": [ |
| 528 | + { |
| 529 | + "data": { |
| 530 | + "text/plain": [ |
| 531 | + "array([[2700, 3000, 3000, 3000, 3000, 3200],\n", |
| 532 | + " [2600, 2800, 2800, 2900, 2900, 2900],\n", |
| 533 | + " [2300, 2500, 2500, 2500, 2500, 2900],\n", |
| 534 | + " [2200, 2400, 3000, 2500, 3000, 3000],\n", |
| 535 | + " [2500, 2700, 2700, 2700, 2900, 2900],\n", |
| 536 | + " [ 0, 0, 0, 0, 0, 2900]])" |
| 537 | + ] |
| 538 | + }, |
| 539 | + "metadata": {}, |
| 540 | + "output_type": "display_data" |
| 541 | + } |
| 542 | + ], |
| 543 | + "source": [ |
| 544 | + "new_employee_salary = [\n", |
| 545 | + " [0, 0, 0, 0, 0, 2900]\n", |
| 546 | + "]\n", |
| 547 | + "\n", |
| 548 | + "base_salary = np.concatenate((base_salary, new_employee_salary), axis=0)\n", |
| 549 | + "display(base_salary)" |
| 550 | + ] |
350 | 551 | } |
351 | 552 | ], |
352 | 553 | "metadata": { |
|
0 commit comments