|
| 1 | +#define TS 32 |
| 2 | +#define WIDTH 4 |
| 3 | + |
| 4 | +#if WIDTH == 1 |
| 5 | + typedef float floatX; |
| 6 | +#elif WIDTH == 2 |
| 7 | + typedef float2 floatX; |
| 8 | +#elif WIDTH == 4 |
| 9 | + typedef float4 floatX; |
| 10 | +#elif WIDTH == 8 |
| 11 | + typedef float8 floatX; |
| 12 | +#endif |
| 13 | + |
| 14 | +__kernel void myGEMM4(const int M, const int N, const int K, |
| 15 | + const __global floatX* A, |
| 16 | + const __global floatX* B, |
| 17 | + __global floatX* C) { |
| 18 | + |
| 19 | + // Thread identifiers |
| 20 | + const int row = get_local_id(0); // Local row ID (max: TS/WIDTH) |
| 21 | + const int col = get_local_id(1); // Local col ID (max: TS) |
| 22 | + const int globalRow = (TS/WIDTH)*get_group_id(0) + row; // Row ID of C (0..M/WIDTH) |
| 23 | + const int globalCol = TS*get_group_id(1) + col; // Col ID of C (0..N) |
| 24 | + |
| 25 | + // Local memory to fit a tile of TS*TS elements of A and B |
| 26 | + __local floatX Asub[TS][TS/WIDTH]; |
| 27 | + __local floatX Bsub[TS][TS/WIDTH]; |
| 28 | + |
| 29 | + // Initialise the accumulation registers |
| 30 | + #if WIDTH == 1 |
| 31 | + floatX acc = 0.0f; |
| 32 | + #elif WIDTH == 2 |
| 33 | + floatX acc = { 0.0f, 0.0f }; |
| 34 | + #elif WIDTH == 4 |
| 35 | + floatX acc = { 0.0f, 0.0f, 0.0f, 0.0f }; |
| 36 | + #elif WIDTH == 8 |
| 37 | + floatX acc = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; |
| 38 | + #endif |
| 39 | + |
| 40 | + // Loop over all tiles |
| 41 | + const int numTiles = K/TS; |
| 42 | + for (int tile=0; tile<numTiles; tile++) { |
| 43 | + |
| 44 | + // Load one tile of A and B into local memory |
| 45 | + const int tiledRow = (TS/WIDTH)*tile + row; |
| 46 | + const int tiledCol = TS*tile + col; |
| 47 | + Asub[col][row] = A[tiledCol*(M/WIDTH) + globalRow]; |
| 48 | + Bsub[col][row] = B[globalCol*(K/WIDTH) + tiledRow]; |
| 49 | + |
| 50 | + // Synchronise to make sure the tile is loaded |
| 51 | + barrier(CLK_LOCAL_MEM_FENCE); |
| 52 | + |
| 53 | + // Perform the computation for a single tile |
| 54 | + floatX vecA, vecB; |
| 55 | + float valB; |
| 56 | + for (int k=0; k<TS/WIDTH; k++) { |
| 57 | + vecB = Bsub[col][k]; |
| 58 | + for (int w=0; w<WIDTH; w++) { |
| 59 | + vecA = Asub[WIDTH*k + w][row]; |
| 60 | + #if WIDTH == 1 |
| 61 | + valB = vecB; |
| 62 | + acc += vecA * valB; |
| 63 | + #elif WIDTH == 2 |
| 64 | + switch (w) { |
| 65 | + case 0: valB = vecB.x; break; |
| 66 | + case 1: valB = vecB.y; break; |
| 67 | + } |
| 68 | + acc.x += vecA.x * valB; |
| 69 | + acc.y += vecA.y * valB; |
| 70 | + #elif WIDTH == 4 |
| 71 | + switch (w) { |
| 72 | + case 0: valB = vecB.x; break; |
| 73 | + case 1: valB = vecB.y; break; |
| 74 | + case 2: valB = vecB.z; break; |
| 75 | + case 3: valB = vecB.w; break; |
| 76 | + } |
| 77 | + acc.x += vecA.x * valB; |
| 78 | + acc.y += vecA.y * valB; |
| 79 | + acc.z += vecA.z * valB; |
| 80 | + acc.w += vecA.w * valB; |
| 81 | + #elif WIDTH == 8 |
| 82 | + switch (w) { |
| 83 | + case 0: valB = vecB.s0; break; |
| 84 | + case 1: valB = vecB.s1; break; |
| 85 | + case 2: valB = vecB.s2; break; |
| 86 | + case 3: valB = vecB.s3; break; |
| 87 | + case 4: valB = vecB.s4; break; |
| 88 | + case 5: valB = vecB.s5; break; |
| 89 | + case 6: valB = vecB.s6; break; |
| 90 | + case 7: valB = vecB.s7; break; |
| 91 | + } |
| 92 | + acc.s0 += vecA.s0 * valB; |
| 93 | + acc.s1 += vecA.s1 * valB; |
| 94 | + acc.s2 += vecA.s2 * valB; |
| 95 | + acc.s3 += vecA.s3 * valB; |
| 96 | + acc.s4 += vecA.s4 * valB; |
| 97 | + acc.s5 += vecA.s5 * valB; |
| 98 | + acc.s6 += vecA.s6 * valB; |
| 99 | + acc.s7 += vecA.s7 * valB; |
| 100 | + #endif |
| 101 | + } |
| 102 | + } |
| 103 | + |
| 104 | + // Synchronise before loading the next tile |
| 105 | + barrier(CLK_LOCAL_MEM_FENCE); |
| 106 | + } |
| 107 | + |
| 108 | + // Store the final results in C |
| 109 | + C[globalCol*(M/WIDTH) + globalRow] = acc; |
| 110 | +} |
| 111 | + |
0 commit comments